Normalized defining polynomial
\( x^{21} + 15 x^{19} - 10 x^{18} + 99 x^{17} - 132 x^{16} + 449 x^{15} - 810 x^{14} + 1512 x^{13} - 2712 x^{12} + 3564 x^{11} - 4392 x^{10} + 4512 x^{9} - 2880 x^{8} - 1227 x^{7} + 10078 x^{6} - 20412 x^{5} + 22680 x^{4} - 15120 x^{3} + 6048 x^{2} - 1344 x + 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2118310801102976905027679213666304=-\,2^{14}\cdot 3^{21}\cdot 47\cdot 59^{3}\cdot 10859^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.63$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 47, 59, 10859$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} + \frac{3}{8} a^{13} + \frac{1}{4} a^{12} - \frac{1}{8} a^{11} - \frac{3}{8} a^{9} + \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{3}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} - \frac{1}{32} a^{15} - \frac{21}{64} a^{14} - \frac{1}{2} a^{13} - \frac{5}{64} a^{12} + \frac{11}{32} a^{11} - \frac{19}{64} a^{10} - \frac{1}{16} a^{9} + \frac{3}{8} a^{8} + \frac{1}{8} a^{7} + \frac{3}{16} a^{6} - \frac{1}{2} a^{5} - \frac{11}{64} a^{2} - \frac{3}{16} a + \frac{5}{16}$, $\frac{1}{512} a^{17} - \frac{25}{512} a^{15} - \frac{101}{256} a^{14} - \frac{133}{512} a^{13} - \frac{13}{128} a^{12} + \frac{89}{512} a^{11} + \frac{107}{256} a^{10} - \frac{15}{32} a^{9} - \frac{17}{64} a^{8} + \frac{39}{128} a^{7} + \frac{7}{64} a^{6} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{117}{512} a^{3} - \frac{17}{256} a^{2} - \frac{1}{128} a + \frac{5}{64}$, $\frac{1}{4096} a^{18} + \frac{1}{2048} a^{17} - \frac{25}{4096} a^{16} - \frac{63}{1024} a^{15} + \frac{487}{4096} a^{14} - \frac{927}{2048} a^{13} + \frac{1521}{4096} a^{12} + \frac{49}{512} a^{11} + \frac{303}{1024} a^{10} + \frac{51}{512} a^{9} + \frac{99}{1024} a^{8} - \frac{9}{256} a^{7} + \frac{107}{256} a^{6} - \frac{3}{8} a^{5} + \frac{885}{4096} a^{4} - \frac{39}{512} a^{3} + \frac{183}{512} a^{2} + \frac{17}{128} a - \frac{59}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{27}{32768} a^{17} - \frac{51}{16384} a^{16} + \frac{399}{32768} a^{15} - \frac{165}{4096} a^{14} + \frac{4133}{32768} a^{13} - \frac{6031}{16384} a^{12} + \frac{115}{8192} a^{11} + \frac{683}{2048} a^{10} - \frac{2305}{8192} a^{9} - \frac{1403}{4096} a^{8} - \frac{751}{2048} a^{7} - \frac{257}{1024} a^{6} + \frac{14197}{32768} a^{5} - \frac{6907}{16384} a^{4} + \frac{1353}{4096} a^{3} + \frac{117}{2048} a^{2} - \frac{23}{2048} a + \frac{1}{1024}$, $\frac{1}{262144} a^{20} - \frac{1}{131072} a^{19} + \frac{19}{262144} a^{18} - \frac{3}{16384} a^{17} + \frac{195}{262144} a^{16} - \frac{261}{131072} a^{15} + \frac{1493}{262144} a^{14} - \frac{949}{65536} a^{13} + \frac{569}{16384} a^{12} - \frac{2615}{32768} a^{11} + \frac{11351}{65536} a^{10} - \frac{2975}{8192} a^{9} - \frac{2101}{8192} a^{8} - \frac{255}{512} a^{7} - \frac{2251}{262144} a^{6} + \frac{3645}{65536} a^{5} - \frac{12393}{65536} a^{4} + \frac{3807}{8192} a^{3} + \frac{211}{16384} a^{2} - \frac{11}{4096} a + \frac{1}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 150713525.554 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1410877440 |
| The 429 conjugacy class representatives for t21n152 are not computed |
| Character table for t21n152 is not computed |
Intermediate fields
| 7.3.640681.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }$ | ${\href{/LocalNumberField/17.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{5}$ | $18{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }$ | R | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.15 | $x^{14} + 2 x^{13} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} + 4 x^{8} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 2 x^{3} + 4 x^{2} + 1$ | $2$ | $7$ | $14$ | $C_{14}$ | $[2]^{7}$ | |
| 3 | Data not computed | ||||||
| $47$ | $\Q_{47}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.1.2 | $x^{2} + 94$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.2.0.1 | $x^{2} - x + 13$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 47.12.0.1 | $x^{12} + x^{2} - x + 41$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| 59 | Data not computed | ||||||
| 10859 | Data not computed | ||||||