Normalized defining polynomial
\( x^{21} - 9 x^{20} + 41 x^{19} - 132 x^{18} + 322 x^{17} - 791 x^{16} + 1785 x^{15} - 3220 x^{14} + 3122 x^{13} - 2044 x^{12} + 2989 x^{11} - 13769 x^{10} + 24304 x^{9} - 14945 x^{8} + 6321 x^{7} + 1372 x^{6} - 4802 x^{5} - 1029 x^{4} + 8232 x^{3} - 2401 x^{2} - 1029 x + 343 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-2096480451371533622031253968968078623=-\,7^{17}\cdot 37^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $53.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{7} a^{9} - \frac{2}{7} a^{8} - \frac{1}{7} a^{7} + \frac{1}{7} a^{6}$, $\frac{1}{7} a^{10} + \frac{2}{7} a^{8} - \frac{1}{7} a^{7} + \frac{2}{7} a^{6}$, $\frac{1}{7} a^{11} + \frac{3}{7} a^{8} - \frac{3}{7} a^{7} - \frac{2}{7} a^{6}$, $\frac{1}{7} a^{12} + \frac{3}{7} a^{8} + \frac{1}{7} a^{7} - \frac{3}{7} a^{6}$, $\frac{1}{7} a^{13} - \frac{3}{7} a^{6}$, $\frac{1}{7} a^{14} - \frac{3}{7} a^{7}$, $\frac{1}{49} a^{15} - \frac{2}{49} a^{14} - \frac{1}{49} a^{13} + \frac{1}{49} a^{12} - \frac{1}{7} a^{8} - \frac{2}{7} a^{6}$, $\frac{1}{49} a^{16} + \frac{2}{49} a^{14} - \frac{1}{49} a^{13} + \frac{2}{49} a^{12} + \frac{3}{7} a^{8} + \frac{1}{7} a^{7} - \frac{3}{7} a^{6}$, $\frac{1}{49} a^{17} + \frac{3}{49} a^{14} - \frac{3}{49} a^{13} - \frac{2}{49} a^{12} + \frac{2}{7} a^{8} - \frac{3}{7} a^{6}$, $\frac{1}{49} a^{18} + \frac{3}{49} a^{14} + \frac{1}{49} a^{13} - \frac{3}{49} a^{12} - \frac{1}{7} a^{7} - \frac{3}{7} a^{6}$, $\frac{1}{49} a^{19} - \frac{3}{49} a^{12} + \frac{2}{7} a^{8} - \frac{1}{7} a^{6}$, $\frac{1}{792521755288394290756091304407628905} a^{20} + \frac{4512501483506918329750822925409748}{792521755288394290756091304407628905} a^{19} + \frac{2249947712854647435053125084499937}{792521755288394290756091304407628905} a^{18} - \frac{2959722912516313955346566646770583}{792521755288394290756091304407628905} a^{17} + \frac{1901972485440881266414422945661171}{792521755288394290756091304407628905} a^{16} - \frac{1024628257576180976158551459747842}{113217393612627755822298757772518415} a^{15} + \frac{21111518919152158996997052070186467}{792521755288394290756091304407628905} a^{14} - \frac{13177179621401352228084487736216851}{792521755288394290756091304407628905} a^{13} - \frac{3145460603557636028250124427889709}{158504351057678858151218260881525781} a^{12} - \frac{7383656007199472314798536387285677}{113217393612627755822298757772518415} a^{11} + \frac{3621369321977707299866157689090143}{113217393612627755822298757772518415} a^{10} + \frac{998314771897298895222606980102512}{16173913373232536546042679681788345} a^{9} - \frac{1268729540931985690859706464194273}{3234782674646507309208535936357669} a^{8} - \frac{6127567745954314665354732913102808}{22643478722525551164459751554503683} a^{7} - \frac{12397900185346802840434554897220092}{113217393612627755822298757772518415} a^{6} + \frac{2004201034838618411993913891206686}{16173913373232536546042679681788345} a^{5} - \frac{2508748572690600382983101260952391}{16173913373232536546042679681788345} a^{4} - \frac{6054358570344349076964332293708738}{16173913373232536546042679681788345} a^{3} - \frac{132221900060416289608343062916373}{16173913373232536546042679681788345} a^{2} - \frac{762227982061594052590860765609725}{3234782674646507309208535936357669} a + \frac{1430728779213639650150576355406394}{16173913373232536546042679681788345}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3649149592.701335 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times F_7$ (as 21T9):
| A solvable group of order 126 |
| The 21 conjugacy class representatives for $C_3\times F_7$ |
| Character table for $C_3\times F_7$ is not computed |
Intermediate fields
| 3.3.67081.2, 7.1.31499023927.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{3}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $37$ | 37.3.2.2 | $x^{3} + 74$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 37.9.6.1 | $x^{9} + 222 x^{6} + 15059 x^{3} + 405224$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 37.9.6.1 | $x^{9} + 222 x^{6} + 15059 x^{3} + 405224$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |