Normalized defining polynomial
\( x^{21} - 27 x^{15} - 54 x^{14} - 117 x^{13} - 224 x^{12} + 513 x^{11} + 2334 x^{10} + 3224 x^{9} + 2160 x^{8} - 1467 x^{7} - 10110 x^{6} - 20412 x^{5} - 22680 x^{4} - 15120 x^{3} - 6048 x^{2} - 1344 x - 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-20906801248251181022960306970083328=-\,2^{14}\cdot 3^{21}\cdot 17^{6}\cdot 131^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $43.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 131$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{3}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{3}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{7}{16} a^{14} - \frac{1}{8} a^{13} - \frac{1}{2} a^{12} - \frac{27}{64} a^{10} + \frac{5}{16} a^{9} - \frac{21}{64} a^{8} - \frac{13}{32} a^{7} + \frac{5}{64} a^{6} + \frac{1}{8} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{11}{64} a^{2} + \frac{3}{16} a + \frac{5}{16}$, $\frac{1}{512} a^{17} + \frac{3}{64} a^{15} - \frac{1}{8} a^{14} + \frac{7}{32} a^{13} + \frac{229}{512} a^{11} - \frac{27}{256} a^{10} + \frac{3}{512} a^{9} + \frac{13}{32} a^{8} + \frac{185}{512} a^{7} - \frac{33}{256} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{139}{512} a^{3} + \frac{17}{256} a^{2} - \frac{49}{128} a - \frac{21}{64}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} + \frac{3}{512} a^{16} - \frac{7}{256} a^{15} + \frac{47}{256} a^{14} - \frac{7}{128} a^{13} + \frac{1765}{4096} a^{12} - \frac{3}{8} a^{11} - \frac{1425}{4096} a^{10} - \frac{411}{2048} a^{9} - \frac{1767}{4096} a^{8} - \frac{237}{1024} a^{7} + \frac{449}{1024} a^{6} + \frac{3}{8} a^{5} + \frac{885}{4096} a^{4} + \frac{39}{512} a^{3} + \frac{95}{512} a^{2} + \frac{55}{128} a + \frac{85}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{7}{8192} a^{17} - \frac{5}{1024} a^{16} + \frac{61}{2048} a^{15} - \frac{91}{512} a^{14} + \frac{2213}{32768} a^{13} - \frac{6629}{16384} a^{12} + \frac{13935}{32768} a^{11} + \frac{3579}{8192} a^{10} + \frac{12165}{32768} a^{9} - \frac{2803}{16384} a^{8} + \frac{1947}{8192} a^{7} + \frac{255}{4096} a^{6} - \frac{14475}{32768} a^{5} + \frac{3367}{16384} a^{4} + \frac{1041}{4096} a^{3} - \frac{497}{2048} a^{2} - \frac{903}{2048} a - \frac{341}{1024}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} + \frac{1}{65536} a^{18} + \frac{1}{32768} a^{17} + \frac{1}{16384} a^{16} + \frac{1}{8192} a^{15} + \frac{37}{262144} a^{14} + \frac{5}{65536} a^{13} - \frac{77}{262144} a^{12} - \frac{189}{131072} a^{11} - \frac{243}{262144} a^{10} + \frac{231}{32768} a^{9} + \frac{865}{32768} a^{8} + \frac{125}{2048} a^{7} + \frac{30533}{262144} a^{6} + \frac{12739}{65536} a^{5} + \frac{20375}{65536} a^{4} - \frac{3807}{8192} a^{3} + \frac{211}{16384} a^{2} + \frac{11}{4096} a + \frac{1}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 619365916.984 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 246 conjugacy class representatives for t21n151 are not computed |
| Character table for t21n151 is not computed |
Intermediate fields
| 7.3.4959529.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $15{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.12.0.1}{12} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.10.0.1}{10} }{,}\,{\href{/LocalNumberField/43.5.0.1}{5} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | $15{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.11 | $x^{14} + x^{12} + 2 x^{10} + 2 x^{7} + 2 x^{5} + 2 x^{4} + 2 x^{3} - 1$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2]^{14}$ | |
| 3 | Data not computed | ||||||
| $17$ | 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 17.12.6.1 | $x^{12} + 117912 x^{6} - 1419857 x^{2} + 3475809936$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 131 | Data not computed | ||||||