Normalized defining polynomial
\( x^{21} - 6 x^{19} - 96 x^{18} - 6 x^{17} + 648 x^{16} + 2889 x^{15} - 5685 x^{14} - 28155 x^{13} - 9420 x^{12} + 241392 x^{11} + 451815 x^{10} - 1479827 x^{9} - 510537 x^{8} + 7030128 x^{7} - 10608182 x^{6} - 37483542 x^{5} + 47557968 x^{4} + 35144488 x^{3} - 121483152 x^{2} + 50031891 x - 18017937 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-20301208447174974342642532070159912109375=-\,3^{28}\cdot 5^{18}\cdot 7^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.06$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{1}{5} a^{6} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{5} a^{14} + \frac{2}{5} a^{10} + \frac{2}{5} a^{9} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{5} a^{15} + \frac{2}{5} a^{5} + \frac{2}{5}$, $\frac{1}{5} a^{16} + \frac{2}{5} a^{6} + \frac{2}{5} a$, $\frac{1}{5} a^{17} + \frac{2}{5} a^{7} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{18} + \frac{2}{5} a^{8} + \frac{2}{5} a^{3}$, $\frac{1}{15} a^{19} - \frac{1}{5} a^{9} - \frac{1}{3} a^{7} + \frac{7}{15} a^{4} - \frac{1}{3} a$, $\frac{1}{385619483900987517152857856963964343309923646213034337293522706823245972351086355} a^{20} - \frac{431655275335845306845283711960197323910637352503136655979639858523222388086619}{18362832566713691292993231283998302062377316486334968442548700324916474873861255} a^{19} + \frac{1039565246983396606301241609608870611400742253749881800291218592730533216982276}{25707965593399167810190523797597622887328243080868955819568180454883064823405757} a^{18} - \frac{169786651701584140111194602596091482361266536449654700917004654691812165418613}{128539827966995839050952618987988114436641215404344779097840902274415324117028785} a^{17} + \frac{905029512190520372521460565872296858663418071458405023020422066932760998528659}{128539827966995839050952618987988114436641215404344779097840902274415324117028785} a^{16} - \frac{2000553526530169590210186939684339503263821809819629588638373888255292700597862}{42846609322331946350317539662662704812213738468114926365946967424805108039009595} a^{15} - \frac{729757626212411235639696224813464128949802577369279199400275023359144656145364}{8569321864466389270063507932532540962442747693622985273189393484961021607801919} a^{14} + \frac{1167235119269576536342462652038574699659725321397260761364993604797360378887144}{11685438906090530822813874453453464948785565036758616281621900206765029465184435} a^{13} - \frac{5999285320911040852544091681034101631868244467178278623092846869595642754408636}{128539827966995839050952618987988114436641215404344779097840902274415324117028785} a^{12} + \frac{10071572661314368346627246204131050326621794750755667535067284644131388278969808}{128539827966995839050952618987988114436641215404344779097840902274415324117028785} a^{11} - \frac{37671718979916977433614500253202402778417453203045498625475504724393849892330211}{128539827966995839050952618987988114436641215404344779097840902274415324117028785} a^{10} - \frac{3224928377954553791063325991787075061335291634966633571292909619050020284241072}{18362832566713691292993231283998302062377316486334968442548700324916474873861255} a^{9} - \frac{26245509692542395719664704404932956105896226220816675370339207357890901793491015}{77123896780197503430571571392792868661984729242606867458704541364649194470217271} a^{8} + \frac{167922382498911056978958891789052065324980198485739326438598712167486094238442}{42846609322331946350317539662662704812213738468114926365946967424805108039009595} a^{7} + \frac{632538292854872961672148664361764766493379678906292827391895270880478488963531}{3672566513342738258598646256799660412475463297266993688509740064983294974772251} a^{6} - \frac{137378979624851254147208679265757012624246380936331209933770383605496648687646143}{385619483900987517152857856963964343309923646213034337293522706823245972351086355} a^{5} - \frac{57807151431343469059449392859457666384984862889151043860451157379333301976478523}{128539827966995839050952618987988114436641215404344779097840902274415324117028785} a^{4} - \frac{2810143894961193498342279580032915930310919076191268153924000893626226773978829}{11685438906090530822813874453453464948785565036758616281621900206765029465184435} a^{3} + \frac{112443406070225653467664601094490594442645132514110205879310128571408940874167359}{385619483900987517152857856963964343309923646213034337293522706823245972351086355} a^{2} + \frac{1208048932582991740244612461063714024685438989292694291432636739052579559077299}{18362832566713691292993231283998302062377316486334968442548700324916474873861255} a - \frac{757522804035797095739763603469810658195234449489249351386687084874009807299979}{6120944188904563764331077094666100687459105495444989480849566774972158291287085}$
Class group and class number
$C_{42}$, which has order $42$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 37226343333.12808 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times F_7$ (as 21T9):
| A solvable group of order 126 |
| The 21 conjugacy class representatives for $C_3\times F_7$ |
| Character table for $C_3\times F_7$ is not computed |
Intermediate fields
| 3.3.3969.2, 7.1.1722980109375.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | R | R | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $5$ | 5.7.6.1 | $x^{7} - 5$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ |
| 5.7.6.1 | $x^{7} - 5$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| 5.7.6.1 | $x^{7} - 5$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |
| 7 | Data not computed | ||||||