Normalized defining polynomial
\( x^{21} + 7 x^{19} - 3 x^{18} - 3 x^{17} - 16 x^{16} - 353 x^{15} - 213 x^{14} - 420 x^{13} - 916 x^{12} + 2308 x^{11} + 2660 x^{10} + 1560 x^{9} + 6188 x^{8} - 3301 x^{7} - 10148 x^{6} - 6715 x^{5} + 1703 x^{4} + 9951 x^{3} + 12672 x^{2} + 11237 x + 7785 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-176088256709912967722303227668133447=-\,7^{17}\cdot 31^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{14} - \frac{1}{4}$, $\frac{1}{4} a^{15} - \frac{1}{4} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{2}$, $\frac{1}{12} a^{17} - \frac{1}{12} a^{16} - \frac{1}{12} a^{14} + \frac{1}{6} a^{13} - \frac{1}{6} a^{12} + \frac{1}{6} a^{11} - \frac{1}{6} a^{10} - \frac{1}{6} a^{8} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{2} a^{5} + \frac{1}{6} a^{4} + \frac{5}{12} a^{3} - \frac{1}{4} a^{2} - \frac{1}{6} a + \frac{1}{4}$, $\frac{1}{48} a^{18} - \frac{1}{48} a^{17} - \frac{1}{16} a^{16} - \frac{1}{12} a^{15} + \frac{5}{48} a^{14} + \frac{1}{12} a^{13} + \frac{1}{6} a^{12} - \frac{1}{6} a^{11} + \frac{1}{12} a^{9} + \frac{1}{6} a^{8} + \frac{1}{6} a^{7} - \frac{1}{4} a^{6} + \frac{1}{6} a^{5} + \frac{23}{48} a^{4} - \frac{5}{16} a^{3} + \frac{7}{48} a^{2} + \frac{1}{4} a - \frac{7}{16}$, $\frac{1}{96} a^{19} - \frac{11}{96} a^{16} - \frac{11}{96} a^{15} + \frac{5}{96} a^{14} - \frac{1}{24} a^{13} + \frac{1}{6} a^{12} - \frac{1}{4} a^{11} - \frac{1}{24} a^{10} + \frac{1}{8} a^{9} - \frac{1}{6} a^{8} + \frac{1}{24} a^{7} - \frac{5}{24} a^{6} - \frac{17}{96} a^{5} - \frac{1}{12} a^{4} - \frac{3}{8} a^{3} + \frac{7}{96} a^{2} + \frac{19}{96} a + \frac{13}{32}$, $\frac{1}{31451904325177804057008707788474754346816} a^{20} - \frac{80931533289596842790796298916359969505}{31451904325177804057008707788474754346816} a^{19} + \frac{20340187496102993900687345790667629293}{7862976081294451014252176947118688586704} a^{18} - \frac{23697434575391634745811583113397269135}{1850112019128106121000512222851456138048} a^{17} - \frac{223582189501340231419838726016461526703}{7862976081294451014252176947118688586704} a^{16} + \frac{72855866276781606122012223715690405421}{982872010161806376781522118389836073338} a^{15} - \frac{3314515271224830677087524366538154016933}{31451904325177804057008707788474754346816} a^{14} - \frac{1058521728896154273141872484953402789863}{7862976081294451014252176947118688586704} a^{13} + \frac{634390163994059606657320675697287323373}{3931488040647225507126088473559344293352} a^{12} + \frac{460248757828029431520017314576326464905}{7862976081294451014252176947118688586704} a^{11} + \frac{37361352310069226217453499972476320545}{982872010161806376781522118389836073338} a^{10} + \frac{52917515318880279394112547631465367029}{7862976081294451014252176947118688586704} a^{9} + \frac{142725307645967122478957485967128555189}{7862976081294451014252176947118688586704} a^{8} + \frac{242496706273549247496936114988671983885}{1310496013549075169042029491186448097784} a^{7} - \frac{7121451362435152357173387864688390142317}{31451904325177804057008707788474754346816} a^{6} + \frac{5102439122876669419191619337775868604659}{10483968108392601352336235929491584782272} a^{5} + \frac{143919875842452905804058840934074070952}{491436005080903188390761059194918036669} a^{4} + \frac{10851599295185399923307144958837583829359}{31451904325177804057008707788474754346816} a^{3} + \frac{1612857288043299717481292427219204649319}{3931488040647225507126088473559344293352} a^{2} - \frac{46873755799283853238289517613041865367}{7862976081294451014252176947118688586704} a + \frac{1700676562846104765488266053322911513149}{3494656036130867117445411976497194927424}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 6975844064.607592 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times F_7$ (as 21T9):
| A solvable group of order 126 |
| The 21 conjugacy class representatives for $C_3\times F_7$ |
| Character table for $C_3\times F_7$ is not computed |
Intermediate fields
| 3.3.47089.2, 7.1.15521617447.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{3}$ | R | $21$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| 31 | Data not computed | ||||||