Normalized defining polynomial
\( x^{21} - 8 x^{18} - 30 x^{16} + 89 x^{15} + 144 x^{14} + 63 x^{13} + 64 x^{12} - 1053 x^{11} - 810 x^{10} - 1624 x^{9} + 144 x^{8} + 735 x^{7} + 1794 x^{6} - 2412 x^{5} - 936 x^{4} - 1104 x^{3} + 288 x^{2} + 384 x - 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1615158658041007763917892811276288=-\,2^{14}\cdot 3^{21}\cdot 41\cdot 593^{3}\cdot 1033^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $38.14$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 41, 593, 1033$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{11} + \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{17} + \frac{1}{4} a^{12} + \frac{1}{8} a^{11} - \frac{1}{8} a^{9} + \frac{3}{8} a^{7} - \frac{1}{4} a^{6} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{18} + \frac{1}{8} a^{13} - \frac{7}{16} a^{12} - \frac{1}{16} a^{10} - \frac{1}{2} a^{9} + \frac{3}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{16} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{32} a^{19} + \frac{1}{16} a^{14} - \frac{7}{32} a^{13} - \frac{1}{2} a^{12} + \frac{15}{32} a^{11} + \frac{1}{4} a^{10} + \frac{3}{32} a^{9} + \frac{7}{16} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} + \frac{15}{32} a^{5} + \frac{1}{16} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{947206359695731204003281362347230784} a^{20} - \frac{1850523499462039855301849896048097}{473603179847865602001640681173615392} a^{19} - \frac{1740590194656986388526685168447997}{59200397480983200250205085146701924} a^{18} + \frac{108624586613120225145980460010427}{29600198740491600125102542573350962} a^{17} + \frac{956820922500612147563751510773223}{14800099370245800062551271286675481} a^{16} + \frac{113573249910041224545225031982970081}{473603179847865602001640681173615392} a^{15} - \frac{19912851566793071295029132231290923}{947206359695731204003281362347230784} a^{14} + \frac{147602644485004038222644144476612639}{473603179847865602001640681173615392} a^{13} - \frac{306412243031201844963612818528562529}{947206359695731204003281362347230784} a^{12} + \frac{96887232844067422838287813141166789}{473603179847865602001640681173615392} a^{11} + \frac{9904472549229525732133444111356259}{947206359695731204003281362347230784} a^{10} + \frac{56270131339497014535020515500460481}{118400794961966400500410170293403848} a^{9} - \frac{41364761170817144156353441042718185}{236801589923932801000820340586807696} a^{8} - \frac{31162774655397237341164451454513281}{118400794961966400500410170293403848} a^{7} + \frac{68462962840784635439423989663785599}{947206359695731204003281362347230784} a^{6} - \frac{109665410078895379116540144577885679}{236801589923932801000820340586807696} a^{5} - \frac{7976689989533343328531526060419369}{29600198740491600125102542573350962} a^{4} + \frac{45219598385279600131106569737256821}{118400794961966400500410170293403848} a^{3} - \frac{2314163743504592866971066332025829}{29600198740491600125102542573350962} a^{2} - \frac{9745038229039496016221435023394173}{29600198740491600125102542573350962} a - \frac{263372764609263537447420059296553}{14800099370245800062551271286675481}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 163749388.094 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1410877440 |
| The 429 conjugacy class representatives for t21n152 are not computed |
| Character table for t21n152 is not computed |
Intermediate fields
| 7.3.612569.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.9.0.1}{9} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | $15{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | $18{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.16 | $x^{14} - 2 x^{13} - 3 x^{12} - 2 x^{10} + 4 x^{9} + 2 x^{8} - 2 x^{7} - 2 x^{6} + 4 x^{5} + 4 x^{4} + 4 x^{3} + 4 x^{2} + 2 x + 3$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2]^{14}$ | |
| $3$ | 3.9.9.9 | $x^{9} + 18 x^{5} + 27 x^{2} + 54$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ |
| 3.12.12.20 | $x^{12} + 33 x^{11} + 81 x^{10} - 75 x^{9} - 81 x^{8} + 81 x^{7} - 54 x^{6} + 54 x^{5} + 81 x^{4} + 81 x^{3} + 81 x^{2} + 81 x - 81$ | $3$ | $4$ | $12$ | 12T173 | $[3/2, 3/2, 3/2, 3/2]_{2}^{4}$ | |
| 41 | Data not computed | ||||||
| 593 | Data not computed | ||||||
| 1033 | Data not computed | ||||||