Normalized defining polynomial
\( x^{21} - 3 x^{20} + 3 x^{19} - 2 x^{18} - 3 x^{17} + 11 x^{16} - 25 x^{15} + 45 x^{14} - 52 x^{13} + 43 x^{12} + 51 x^{11} - 121 x^{10} + 143 x^{9} - 83 x^{8} - 62 x^{7} + 95 x^{6} - 203 x^{5} + 45 x^{4} - 50 x^{3} - 26 x^{2} + 3 x - 7 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-160091556105803523932869333700219=-\,11^{9}\cdot 13^{12}\cdot 37^{2}\cdot 1459^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 13, 37, 1459$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{18} - \frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{19} - \frac{1}{2} a^{14} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{78602243624976758} a^{20} + \frac{3839669373557186}{39301121812488379} a^{19} - \frac{240330560729221}{39301121812488379} a^{18} + \frac{4902013554606837}{39301121812488379} a^{17} - \frac{3255028410934926}{39301121812488379} a^{16} + \frac{11581723348857921}{78602243624976758} a^{15} + \frac{15866698030351477}{39301121812488379} a^{14} + \frac{6439790323302530}{39301121812488379} a^{13} + \frac{35235997893831367}{78602243624976758} a^{12} + \frac{13427287379958352}{39301121812488379} a^{11} - \frac{24840394543706765}{78602243624976758} a^{10} + \frac{37578508223390381}{78602243624976758} a^{9} - \frac{14919796001284380}{39301121812488379} a^{8} + \frac{13828876969847557}{39301121812488379} a^{7} - \frac{12607537812032031}{39301121812488379} a^{6} + \frac{11683240040307275}{39301121812488379} a^{5} - \frac{55045458900982}{39301121812488379} a^{4} + \frac{12110801605949474}{39301121812488379} a^{3} + \frac{1573884910659173}{78602243624976758} a^{2} + \frac{6204685058390535}{78602243624976758} a - \frac{6968510197756551}{39301121812488379}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 54878271.2447 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 91854 |
| The 168 conjugacy class representatives for t21n98 are not computed |
| Character table for t21n98 is not computed |
Intermediate fields
| 7.1.38014691.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | ${\href{/LocalNumberField/3.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | $21$ | $18{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{3}$ | R | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }$ | $21$ | R | $18{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | $18{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | $21$ | $21$ | ${\href{/LocalNumberField/59.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 11 | Data not computed | ||||||
| 13 | Data not computed | ||||||
| $37$ | 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 37.3.2.2 | $x^{3} + 74$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 37.9.0.1 | $x^{9} - 3 x + 5$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| 1459 | Data not computed | ||||||