Normalized defining polynomial
\( x^{21} - 3 x^{20} - 5 x^{19} - 43 x^{18} + 287 x^{17} - 286 x^{16} + 309 x^{15} - 5832 x^{14} + 14849 x^{13} + 23772 x^{12} - 100540 x^{11} + 251238 x^{10} - 954894 x^{9} - 83566 x^{8} + 3314973 x^{7} + 1174509 x^{6} + 5584313 x^{5} - 34579327 x^{4} - 21371158 x^{3} + 98029199 x^{2} + 27253836 x - 127427549 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-14978582190038884880930805105486631888339=-\,7^{3}\cdot 13^{7}\cdot 109^{6}\cdot 644179747^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 13, 109, 644179747$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871} a^{20} + \frac{57327291251085434809647969975577415018039096524930985437757490226899347793451458188}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871} a^{19} - \frac{145736886142617566296576108177500416450639206566494836649921438132040490313311252478}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871} a^{18} + \frac{104703873415644330612368534025867883303841519922425859559287730529107361902450860269}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871} a^{17} + \frac{156317485336542456522806338500619150447073463390977741107731344386387988068505567473}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871} a^{16} - \frac{124399022675597247556717779346978160939106596345381997899566957910912850986090718907}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871} a^{15} - \frac{23169397071999760143081967173380393728899326336266092050763058300450631879917885249}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871} a^{14} - \frac{6858772848570096221280062429210814080275780463351002860533124227683284655960173437}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871} a^{13} + \frac{125912789863217839751189485128963481402267950597147140894518740134931023039323363732}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871} a^{12} + \frac{25787942965348908826571797097632991471620400420808883043512784681181828349069090581}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871} a^{11} - \frac{35025860353579455221344467124921014884780695577301252165613795496180736676963449438}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871} a^{10} - \frac{22537463720085330153452979492152302371949971775197893101348499666910505282813567585}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871} a^{9} - \frac{156631588523330348073789756662388296029209010212187819389716818475301522435181715094}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871} a^{8} - \frac{128296737443604088534755491184248278363423696207725825172674107974015783228164953394}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871} a^{7} + \frac{157380227553410682688033905442439618210828543344231045832092470013194442570960695074}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871} a^{6} - \frac{51553694391601030784550997125240446428519156743133576484991477107362135879078905770}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871} a^{5} + \frac{91345443809293623122786892796944859207902916426980082512605400421889763020237978287}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871} a^{4} + \frac{112124526048040063690466263901847723163799897520801600124109305789017697191366518596}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871} a^{3} + \frac{62656285965016436406112153115069414299589014313814950872147938302513572708381975502}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871} a^{2} + \frac{156102432902749098293148842780023950445799006640780656146811934530037552718456014138}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871} a - \frac{160053080194423539475769641587802155059773016561221771218624442612455597302629890281}{320997382868914114984199865528996596748123882848056593621399163625401995184454508871}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 136979558927 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5878656 |
| The 120 conjugacy class representatives for t21n136 are not computed |
| Character table for t21n136 is not computed |
Intermediate fields
| 7.3.2007889.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }{,}\,{\href{/LocalNumberField/2.7.0.1}{7} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | $21$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}$ | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | $21$ | $21$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 7.6.3.1 | $x^{6} - 14 x^{4} + 49 x^{2} - 1372$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 7.9.0.1 | $x^{9} + x^{2} - 6 x + 2$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 13.2.1.1 | $x^{2} - 13$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 13.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 13.4.0.1 | $x^{4} + x^{2} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 13.4.2.2 | $x^{4} - 13 x^{2} + 338$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $109$ | $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 109.12.6.1 | $x^{12} + 28490638 x^{6} - 15386239549 x^{2} + 202929113411761$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 644179747 | Data not computed | ||||||