Normalized defining polynomial
\( x^{21} - 12 x^{19} - 4 x^{18} + 72 x^{17} + 21 x^{16} - 261 x^{15} - 72 x^{14} + 678 x^{13} + 58 x^{12} - 1062 x^{11} - 285 x^{10} + 513 x^{9} + 1188 x^{8} - 768 x^{7} - 2702 x^{6} + 792 x^{5} + 1485 x^{4} - 865 x^{3} - 342 x^{2} + 183 x - 47 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-143926122875821803405026699823=-\,3^{28}\cdot 184607^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.46$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 184607$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{17} a^{19} + \frac{6}{17} a^{18} - \frac{2}{17} a^{17} - \frac{2}{17} a^{16} - \frac{7}{17} a^{15} - \frac{3}{17} a^{14} + \frac{5}{17} a^{13} + \frac{2}{17} a^{12} - \frac{1}{17} a^{11} + \frac{1}{17} a^{9} - \frac{7}{17} a^{8} + \frac{3}{17} a^{7} - \frac{6}{17} a^{6} + \frac{2}{17} a^{5} - \frac{1}{17} a^{4} + \frac{3}{17} a^{3} - \frac{1}{17} a^{2} + \frac{3}{17} a + \frac{8}{17}$, $\frac{1}{3253135691399215134576769965761921} a^{20} + \frac{77433207534767873907392027405942}{3253135691399215134576769965761921} a^{19} + \frac{968390501997072482905558842170573}{3253135691399215134576769965761921} a^{18} - \frac{185060386605814483880865493455447}{3253135691399215134576769965761921} a^{17} + \frac{928107764321302582385994811774344}{3253135691399215134576769965761921} a^{16} - \frac{1572544747989095921482892524604806}{3253135691399215134576769965761921} a^{15} - \frac{255439308490538712537983237058849}{3253135691399215134576769965761921} a^{14} - \frac{123597120039083044325129114716338}{3253135691399215134576769965761921} a^{13} + \frac{1186947971748778229873941414349471}{3253135691399215134576769965761921} a^{12} + \frac{501309865618254569206428039785850}{3253135691399215134576769965761921} a^{11} - \frac{815058120489185267337781789950061}{3253135691399215134576769965761921} a^{10} - \frac{1009684547114353452974461098727429}{3253135691399215134576769965761921} a^{9} - \frac{236945100574924659011265059384248}{3253135691399215134576769965761921} a^{8} - \frac{15842730128512077290105356491732}{3253135691399215134576769965761921} a^{7} + \frac{570545032182495579556106955896283}{3253135691399215134576769965761921} a^{6} - \frac{501851931707686482132083944294394}{3253135691399215134576769965761921} a^{5} - \frac{997058230335690727760506581030777}{3253135691399215134576769965761921} a^{4} - \frac{1595881830134966178461823365382796}{3253135691399215134576769965761921} a^{3} - \frac{226295608385058500656347808913745}{3253135691399215134576769965761921} a^{2} + \frac{176984929138130870828795028721739}{3253135691399215134576769965761921} a - \frac{1220316942539972213738353782729317}{3253135691399215134576769965761921}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1049116.64407 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 3674160 |
| The 143 conjugacy class representatives for t21n130 are not computed |
| Character table for t21n130 is not computed |
Intermediate fields
| 7.1.184607.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | R | $15{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | $15{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}$ | $15{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{3}$ | $15{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | $18{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | $15{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | $18{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 184607 | Data not computed | ||||||