Normalized defining polynomial
\( x^{21} - 4 x^{19} - 2 x^{18} - 5 x^{17} + 58 x^{16} - 25 x^{15} - 201 x^{14} + 345 x^{13} - 93 x^{12} + 228 x^{11} + 426 x^{10} - 758 x^{9} - 54 x^{8} + 149 x^{7} - 473 x^{6} - 1772 x^{5} - 2981 x^{4} - 1405 x^{3} + 378 x^{2} + 18 x - 117 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-142304167851792866305606535751=-\,3^{20}\cdot 151^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $24.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 151$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{103499063913388585795079116182205901292597} a^{20} - \frac{6797653421770758594411866518960141371741}{34499687971129528598359705394068633764199} a^{19} - \frac{30932260990830667892906191073198828342833}{103499063913388585795079116182205901292597} a^{18} + \frac{1627534454854419812653930907227068831763}{103499063913388585795079116182205901292597} a^{17} + \frac{17287826537935341660173659840916710186759}{103499063913388585795079116182205901292597} a^{16} - \frac{11923672314690491833816238832116555386004}{103499063913388585795079116182205901292597} a^{15} - \frac{28800714209463940613618545829797573134493}{103499063913388585795079116182205901292597} a^{14} - \frac{2420595176287437595799823390315564762275}{34499687971129528598359705394068633764199} a^{13} - \frac{6959042854142359347221576710913819763773}{34499687971129528598359705394068633764199} a^{12} - \frac{2778157865947768373670720123056494233503}{34499687971129528598359705394068633764199} a^{11} - \frac{1235387933355541908803518607853388559508}{34499687971129528598359705394068633764199} a^{10} + \frac{5863184664390680415931017304447534289}{122774690288717183624055891082094782079} a^{9} - \frac{8945584094327180090982391937150372213180}{103499063913388585795079116182205901292597} a^{8} - \frac{16891941612595147380891653485723305234891}{34499687971129528598359705394068633764199} a^{7} - \frac{19811505756927766858423530547701686965576}{103499063913388585795079116182205901292597} a^{6} - \frac{34682573532145258885649321141560963712171}{103499063913388585795079116182205901292597} a^{5} - \frac{18465051582519413649453314998988264586035}{103499063913388585795079116182205901292597} a^{4} + \frac{11971357206073795061402599658294083457833}{103499063913388585795079116182205901292597} a^{3} - \frac{38070305286508327175226395754147752342539}{103499063913388585795079116182205901292597} a^{2} + \frac{15853132852803943298219753188774297338157}{34499687971129528598359705394068633764199} a - \frac{1120690415123215155090078188930725712339}{2653822151625348353719977338005279520323}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2184999.95298 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 10206 |
| The 96 conjugacy class representatives for t21n52 are not computed |
| Character table for t21n52 is not computed |
Intermediate fields
| 7.1.3442951.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{6}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.6.8.8 | $x^{6} + 3 x^{5} + 63$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $[2, 2]^{2}$ | |
| 3.6.8.8 | $x^{6} + 3 x^{5} + 63$ | $3$ | $2$ | $8$ | $S_3\times C_3$ | $[2, 2]^{2}$ | |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $151$ | 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.2.1.2 | $x^{2} + 755$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 151.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 151.6.3.2 | $x^{6} - 22801 x^{2} + 17214755$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 151.6.3.2 | $x^{6} - 22801 x^{2} + 17214755$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |