Normalized defining polynomial
\( x^{21} - 21 x^{19} - 2 x^{18} + 189 x^{17} - 843 x^{15} + 126 x^{14} + 1869 x^{13} - 1072 x^{12} - 2457 x^{11} + 7770 x^{10} + 1395 x^{9} - 24948 x^{8} - 9723 x^{7} + 52888 x^{6} + 40320 x^{5} - 48594 x^{4} - 75620 x^{3} - 9702 x^{2} + 28266 x + 11494 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1395088421598327334260620375359488=-\,2^{18}\cdot 3^{28}\cdot 7^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{17} - \frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{2} a^{13} - \frac{1}{4} a^{10} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{15} - \frac{1}{2} a^{12} + \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{55459548098837600706376665865780004893791644} a^{20} - \frac{2630954365709930854338652912092984191672989}{27729774049418800353188332932890002446895822} a^{19} + \frac{1742593326470542380807909816507743000569727}{55459548098837600706376665865780004893791644} a^{18} + \frac{7544128542453069576829126877037506228930135}{55459548098837600706376665865780004893791644} a^{17} + \frac{1583234416947435858250772645077661407792189}{13864887024709400176594166466445001223447911} a^{16} + \frac{6820292813843167717868490823054873127259217}{55459548098837600706376665865780004893791644} a^{15} + \frac{3411966228695121030615049205951404631291780}{13864887024709400176594166466445001223447911} a^{14} + \frac{4308264799347358010823478808967276625917712}{13864887024709400176594166466445001223447911} a^{13} + \frac{915057061081357223210266495609869549962045}{55459548098837600706376665865780004893791644} a^{12} + \frac{1546083374525990172136404789884849487828708}{13864887024709400176594166466445001223447911} a^{11} + \frac{24115450651202862222837185284335479614124001}{55459548098837600706376665865780004893791644} a^{10} - \frac{24909882486695545627839240233822101500942197}{55459548098837600706376665865780004893791644} a^{9} - \frac{11296949427393563288448497392383690009530645}{27729774049418800353188332932890002446895822} a^{8} - \frac{9780815418705073211266499372235581118264741}{55459548098837600706376665865780004893791644} a^{7} + \frac{3292412568367742304679423344323528042262273}{27729774049418800353188332932890002446895822} a^{6} + \frac{675115833542647819473496631814155107929051}{13864887024709400176594166466445001223447911} a^{5} - \frac{13400261533778758178764733584053881825236601}{27729774049418800353188332932890002446895822} a^{4} + \frac{13334133193751334517430062778091083817197891}{27729774049418800353188332932890002446895822} a^{3} - \frac{7301284024195734859758339086120157247631523}{27729774049418800353188332932890002446895822} a^{2} - \frac{4255893297126776723867693782791203333118513}{27729774049418800353188332932890002446895822} a - \frac{5469361551171146765903212909650288488231277}{27729774049418800353188332932890002446895822}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 438540258.63952965 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times F_7$ (as 21T9):
| A solvable group of order 126 |
| The 21 conjugacy class representatives for $C_3\times F_7$ |
| Character table for $C_3\times F_7$ is not computed |
Intermediate fields
| 3.3.3969.1, 7.1.7057326528.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | $21$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||