Normalized defining polynomial
\( x^{21} - 6 x^{20} + 27 x^{19} - 106 x^{18} + 291 x^{17} - 654 x^{16} + 1319 x^{15} - 2328 x^{14} + 3921 x^{13} - 5612 x^{12} + 7467 x^{11} - 10410 x^{10} + 10203 x^{9} - 11046 x^{8} + 13119 x^{7} - 7050 x^{6} + 8664 x^{5} - 6660 x^{4} + 2044 x^{3} - 2778 x^{2} + 1104 x - 62 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1395088421598327334260620375359488=-\,2^{18}\cdot 3^{28}\cdot 7^{17}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $37.87$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{9}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{17} - \frac{1}{4} a^{16} - \frac{1}{4} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} + \frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{19} - \frac{1}{4} a^{15} + \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{799754352040540524920089763299667252} a^{20} + \frac{44542814308581971741693556010939873}{799754352040540524920089763299667252} a^{19} + \frac{7134989506258150234664138046374493}{799754352040540524920089763299667252} a^{18} - \frac{88623580333908080932456346276095933}{799754352040540524920089763299667252} a^{17} - \frac{98817743944213593478475037771664841}{399877176020270262460044881649833626} a^{16} + \frac{9741275080882403235846678006542236}{199938588010135131230022440824916813} a^{15} + \frac{44863593571832407485365958809106941}{199938588010135131230022440824916813} a^{14} + \frac{154914293921854937315487966714121909}{399877176020270262460044881649833626} a^{13} + \frac{244577867631063556106256501970980541}{799754352040540524920089763299667252} a^{12} + \frac{250180078759827212795282398473479929}{799754352040540524920089763299667252} a^{11} - \frac{138223582682602921503657875128978353}{799754352040540524920089763299667252} a^{10} - \frac{129801815452696858919267458535075175}{799754352040540524920089763299667252} a^{9} - \frac{184408583354828555580924118486796157}{399877176020270262460044881649833626} a^{8} + \frac{76919720020528003501102936257231495}{199938588010135131230022440824916813} a^{7} - \frac{80916631776369500978686945439566691}{399877176020270262460044881649833626} a^{6} - \frac{65015517462320801648207072912790253}{399877176020270262460044881649833626} a^{5} + \frac{104533356539661002257110194699480657}{399877176020270262460044881649833626} a^{4} - \frac{907214398665484486844630156072441}{399877176020270262460044881649833626} a^{3} - \frac{9735683985469462227310910903731161}{399877176020270262460044881649833626} a^{2} + \frac{91743235524488883140753121820595779}{199938588010135131230022440824916813} a + \frac{31894411920991715439524299383161602}{199938588010135131230022440824916813}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 470357525.1874316 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times F_7$ (as 21T9):
| A solvable group of order 126 |
| The 21 conjugacy class representatives for $C_3\times F_7$ |
| Character table for $C_3\times F_7$ is not computed |
Intermediate fields
| 3.3.3969.1, 7.1.144027072.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||