Normalized defining polynomial
\( x^{21} - 21 x^{19} - 22 x^{18} + 171 x^{17} + 354 x^{16} - 1512 x^{15} - 1944 x^{14} + 1191 x^{13} + 10124 x^{12} - 17838 x^{11} - 13044 x^{10} - 85563 x^{9} + 17388 x^{8} - 356328 x^{7} + 18482 x^{6} + 4896 x^{5} - 145008 x^{4} + 33328 x^{3} + 28224 x^{2} - 18816 x - 6272 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1384006141387391801966966447918497972224=-\,2^{14}\cdot 3^{22}\cdot 7^{2}\cdot 11^{9}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $73.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{14} - \frac{1}{2} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} + \frac{1}{4} a^{4} - \frac{1}{2} a$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{15} + \frac{1}{4} a^{14} - \frac{1}{8} a^{13} + \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{8} a^{9} - \frac{1}{2} a^{8} - \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{3}{8} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{16} a^{18} - \frac{1}{16} a^{16} + \frac{1}{8} a^{15} + \frac{7}{16} a^{14} + \frac{1}{8} a^{13} + \frac{1}{4} a^{12} - \frac{1}{2} a^{11} + \frac{7}{16} a^{10} - \frac{1}{4} a^{9} - \frac{1}{8} a^{8} + \frac{1}{4} a^{7} - \frac{3}{16} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{3}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{19} - \frac{1}{32} a^{17} + \frac{1}{16} a^{16} + \frac{7}{32} a^{15} - \frac{7}{16} a^{14} + \frac{1}{8} a^{13} - \frac{1}{4} a^{12} - \frac{9}{32} a^{11} + \frac{3}{8} a^{10} - \frac{1}{16} a^{9} + \frac{1}{8} a^{8} + \frac{13}{32} a^{7} + \frac{3}{8} a^{6} - \frac{1}{8} a^{5} - \frac{3}{16} a^{4} - \frac{1}{4} a^{2}$, $\frac{1}{1247955375448121963092775441142688517078943630528607053632} a^{20} + \frac{242494658843938288246208709557183008680486581355997195}{44569834837432927253313408612238875609962272518878823344} a^{19} - \frac{3433120062391165868379403155614677969369399482503157583}{178279339349731709013253634448955502439849090075515293376} a^{18} + \frac{33313032554081583089984012385097431027394624042965803439}{623977687724060981546387720571344258539471815264303526816} a^{17} + \frac{120925256831224583404603539368515928060771328399221308119}{1247955375448121963092775441142688517078943630528607053632} a^{16} + \frac{66823136011675380579580254805752241704141175115351115487}{623977687724060981546387720571344258539471815264303526816} a^{15} + \frac{14359039729683688726075690827254816226444651557953037219}{44569834837432927253313408612238875609962272518878823344} a^{14} - \frac{19403939663860111340565755099213997756466360964757019847}{155994421931015245386596930142836064634867953816075881704} a^{13} - \frac{89130247947760133298219728050129419447957869709257301481}{1247955375448121963092775441142688517078943630528607053632} a^{12} + \frac{154533720837433656037954658899924428104561483273346275}{9176142466530308552152760596637415566756938459769169512} a^{11} + \frac{76010746735237776454601804834913198150659576450244213499}{623977687724060981546387720571344258539471815264303526816} a^{10} + \frac{108189751741456113600596782834522001258090995414251241331}{311988843862030490773193860285672129269735907632151763408} a^{9} - \frac{3798665308184812329068818685810694101078628553244060515}{73409139732242468417222084773099324534055507678153356096} a^{8} + \frac{25465916269363714039562362923015677854912292138833439}{134246490474195564016004242807948420511934555779755492} a^{7} + \frac{3633689967894715454692554358215463669667620509866790183}{44569834837432927253313408612238875609962272518878823344} a^{6} - \frac{172491207121522480348891193956174909598186281071518740963}{623977687724060981546387720571344258539471815264303526816} a^{5} - \frac{55942824264099538054886680693732664493543547548984541}{1879450866638737896224059399311277887167083780916576888} a^{4} - \frac{18145749146193996387619695098464703103709729348903225003}{155994421931015245386596930142836064634867953816075881704} a^{3} - \frac{11675447874830538239634986717371406421364682688762882901}{38998605482753811346649232535709016158716988454018970426} a^{2} - \frac{1032198077012400694264085954032183250538925294281675348}{2785614677339557953332088038264929725622642032429926459} a - \frac{893369922628004528970668620236305418612952120906089025}{2785614677339557953332088038264929725622642032429926459}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 429100247614 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 5878656 |
| The 105 conjugacy class representatives for t21n133 are not computed |
| Character table for t21n133 is not computed |
Intermediate fields
| 7.1.38014691.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | R | R | R | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.9.0.1}{9} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | $18{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.9.0.1}{9} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.12.12.13 | $x^{12} - 18 x^{10} - 13 x^{8} - 44 x^{6} + 55 x^{4} + 62 x^{2} + 21$ | $2$ | $6$ | $12$ | 12T105 | $[2, 2, 2, 2, 2]^{6}$ | |
| $3$ | 3.3.4.4 | $x^{3} + 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $S_3$ | $[2]^{2}$ |
| 3.9.9.8 | $x^{9} + 6 x^{7} + 18 x^{3} + 27$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ | |
| 3.9.9.5 | $x^{9} + 3 x^{7} + 3 x^{6} + 54$ | $3$ | $3$ | $9$ | $(C_3^2:C_3):C_2$ | $[3/2, 3/2, 3/2]_{2}^{3}$ | |
| 7 | Data not computed | ||||||
| $11$ | 11.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 11.6.3.2 | $x^{6} - 121 x^{2} + 3993$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 13 | Data not computed | ||||||