Normalized defining polynomial
\( x^{21} - 18 x^{19} - 2 x^{18} - 81 x^{17} + 12 x^{16} + 1190 x^{15} - 36 x^{14} + 16188 x^{13} + 4536 x^{12} - 15165 x^{11} + 44712 x^{10} - 829793 x^{9} - 1493568 x^{8} - 5381199 x^{7} - 4256218 x^{6} + 1955916 x^{5} + 401568 x^{4} - 1042672 x^{3} + 684576 x^{2} + 456384 x - 304256 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-13323487817207712485393041038446217904128=-\,2^{14}\cdot 3^{28}\cdot 2377^{2}\cdot 184607^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 2377, 184607$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{10} - \frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{17} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{8} a^{13} - \frac{1}{2} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} + \frac{3}{8} a^{7} - \frac{1}{8} a^{5} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{18} - \frac{1}{8} a^{16} - \frac{1}{8} a^{15} - \frac{1}{16} a^{14} - \frac{1}{4} a^{13} + \frac{3}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{2} a^{9} + \frac{3}{16} a^{8} - \frac{1}{2} a^{7} - \frac{1}{16} a^{6} + \frac{1}{16} a^{4} + \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{32} a^{19} - \frac{1}{16} a^{17} - \frac{1}{16} a^{16} - \frac{1}{32} a^{15} + \frac{3}{8} a^{14} - \frac{5}{16} a^{13} - \frac{1}{8} a^{12} + \frac{3}{8} a^{11} - \frac{1}{4} a^{10} + \frac{3}{32} a^{9} + \frac{1}{4} a^{8} + \frac{15}{32} a^{7} - \frac{15}{32} a^{5} + \frac{3}{16} a^{4} + \frac{3}{8} a^{3}$, $\frac{1}{210874588128333862954984438819690233181873840389699041565218423072203840} a^{20} - \frac{24831569550436525920745471697017479711710624109845829453766025766887}{6589830879010433217343263713115319786933557512178095048913075721006370} a^{19} - \frac{2697840713111755088359990493772171542817880193983180631589692125251531}{105437294064166931477492219409845116590936920194849520782609211536101920} a^{18} + \frac{3008387682492484986358040946644515110518119944823250724175509728563883}{105437294064166931477492219409845116590936920194849520782609211536101920} a^{17} - \frac{3619024388872001583606407112161523199063606151006224580803157159037941}{42174917625666772590996887763938046636374768077939808313043684614440768} a^{16} + \frac{9596036535332776180673937588377650062529600199004563192194428831195153}{52718647032083465738746109704922558295468460097424760391304605768050960} a^{15} - \frac{3870192169983414137425062366736888809557178838470556698368907379528579}{105437294064166931477492219409845116590936920194849520782609211536101920} a^{14} + \frac{2679070464210256084196517759437532417764066299758075125450734734228149}{52718647032083465738746109704922558295468460097424760391304605768050960} a^{13} + \frac{9857978622430518371223446799349144079378962578050966125384305928554881}{52718647032083465738746109704922558295468460097424760391304605768050960} a^{12} - \frac{286684704889467244859633930182865036836718397384226262949848055312529}{5271864703208346573874610970492255829546846009742476039130460576805096} a^{11} - \frac{3227412556348249523024953656773331115325015394576499837242787065035369}{42174917625666772590996887763938046636374768077939808313043684614440768} a^{10} - \frac{9861959611905428690751595005534231998290743122927310750753618196118511}{26359323516041732869373054852461279147734230048712380195652302884025480} a^{9} + \frac{6664743701103262635872731765631835523467099052756318457920554248981209}{19170417102575805723180403529062748471079440035427185596838038461109440} a^{8} - \frac{952873922363562258343226804851038386853597744913601425018973869555983}{26359323516041732869373054852461279147734230048712380195652302884025480} a^{7} - \frac{68622495590712462775536664856909940655936216096721769597422586578945163}{210874588128333862954984438819690233181873840389699041565218423072203840} a^{6} - \frac{41613423981082917528472271691876956419860374347102476314387105180667593}{105437294064166931477492219409845116590936920194849520782609211536101920} a^{5} - \frac{159934541607384786277975024971428152450059545942543430063926950549793}{479260427564395143079510088226568711776986000885679639920950961527736} a^{4} + \frac{2050022072362043652858761683749260045520911824857403601342104909476059}{6589830879010433217343263713115319786933557512178095048913075721006370} a^{3} + \frac{6572805910439922869269042592328275204115887105365986985097315929982471}{13179661758020866434686527426230639573867115024356190097826151442012740} a^{2} - \frac{1435479273216682604156273030536703065126476591203399927370231771407507}{3294915439505216608671631856557659893466778756089047524456537860503185} a + \frac{1011395017030096276166940942187567338314148038954211321699975132182849}{3294915439505216608671631856557659893466778756089047524456537860503185}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 368841514834 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 261 conjugacy class representatives for t21n149 are not computed |
| Character table for t21n149 is not computed |
Intermediate fields
| 7.1.184607.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.10.0.1}{10} }{,}\,{\href{/LocalNumberField/5.5.0.1}{5} }{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | $21$ | $15{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | $15{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | $18{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.36 | $x^{14} - x^{12} + 2 x^{10} + 2 x^{9} + 2 x^{7} + 2 x^{6} + 2 x^{5} + 2 x^{2} + 2 x + 1$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| 2377 | Data not computed | ||||||
| 184607 | Data not computed | ||||||