Normalized defining polynomial
\( x^{21} + 24 x^{19} - 16 x^{18} + 270 x^{17} - 360 x^{16} + 2820 x^{15} - 5400 x^{14} + 36081 x^{13} - 87416 x^{12} + 190863 x^{11} - 385986 x^{10} + 120545 x^{9} + 1087884 x^{8} - 8079579 x^{7} + 29377014 x^{6} - 55677564 x^{5} + 60990264 x^{4} - 40506896 x^{3} + 16190496 x^{2} - 3597888 x + 342656 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-123150719151859535557398786815169892171776=-\,2^{14}\cdot 3^{28}\cdot 71^{9}\cdot 2677^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $90.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 71, 2677$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3}$, $\frac{1}{3} a^{4} - \frac{1}{3} a$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{2}$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{3} - \frac{2}{9}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{4} - \frac{2}{9} a$, $\frac{1}{9} a^{8} + \frac{1}{9} a^{5} - \frac{2}{9} a^{2}$, $\frac{1}{27} a^{9} - \frac{1}{9} a^{3} + \frac{2}{27}$, $\frac{1}{27} a^{10} - \frac{1}{9} a^{4} + \frac{2}{27} a$, $\frac{1}{27} a^{11} - \frac{1}{9} a^{5} + \frac{2}{27} a^{2}$, $\frac{1}{81} a^{12} - \frac{1}{81} a^{9} - \frac{1}{27} a^{6} + \frac{5}{81} a^{3} - \frac{2}{81}$, $\frac{1}{81} a^{13} - \frac{1}{81} a^{10} - \frac{1}{27} a^{7} + \frac{5}{81} a^{4} - \frac{2}{81} a$, $\frac{1}{81} a^{14} - \frac{1}{81} a^{11} - \frac{1}{27} a^{8} + \frac{5}{81} a^{5} - \frac{2}{81} a^{2}$, $\frac{1}{1944} a^{15} - \frac{1}{162} a^{14} - \frac{1}{162} a^{13} - \frac{1}{243} a^{12} + \frac{5}{324} a^{11} - \frac{1}{81} a^{10} + \frac{1}{486} a^{9} - \frac{1}{27} a^{8} + \frac{1}{216} a^{7} - \frac{7}{486} a^{6} - \frac{47}{648} a^{5} - \frac{37}{324} a^{4} - \frac{91}{1944} a^{3} - \frac{2}{81} a^{2} + \frac{83}{648} a + \frac{61}{972}$, $\frac{1}{15552} a^{16} - \frac{1}{7776} a^{15} - \frac{1}{1296} a^{14} - \frac{7}{1944} a^{13} + \frac{23}{7776} a^{12} - \frac{11}{1296} a^{11} - \frac{41}{3888} a^{10} - \frac{17}{972} a^{9} + \frac{73}{1728} a^{8} - \frac{77}{7776} a^{7} + \frac{155}{15552} a^{6} + \frac{11}{648} a^{5} + \frac{2153}{15552} a^{4} - \frac{1211}{7776} a^{3} - \frac{1069}{5184} a^{2} - \frac{1903}{3888} a + \frac{1049}{3888}$, $\frac{1}{124416} a^{17} - \frac{1}{7776} a^{15} + \frac{19}{7776} a^{14} + \frac{13}{2304} a^{13} - \frac{29}{15552} a^{12} - \frac{491}{31104} a^{11} + \frac{13}{1728} a^{10} + \frac{881}{124416} a^{9} - \frac{647}{15552} a^{8} - \frac{155}{4608} a^{7} - \frac{289}{62208} a^{6} - \frac{2311}{124416} a^{5} - \frac{41}{384} a^{4} + \frac{3085}{124416} a^{3} - \frac{16325}{62208} a^{2} - \frac{269}{3456} a + \frac{1673}{15552}$, $\frac{1}{32845824} a^{18} + \frac{1}{497664} a^{17} + \frac{1}{684288} a^{16} + \frac{1}{228096} a^{15} - \frac{29947}{5474304} a^{14} - \frac{10025}{2737152} a^{13} + \frac{14635}{2737152} a^{12} - \frac{187}{62208} a^{11} + \frac{47083}{10948608} a^{10} - \frac{272779}{16422912} a^{9} - \frac{468355}{10948608} a^{8} + \frac{12209}{2737152} a^{7} + \frac{21797}{405504} a^{6} - \frac{69107}{5474304} a^{5} - \frac{143401}{10948608} a^{4} + \frac{58199}{684288} a^{3} - \frac{118007}{1368576} a^{2} + \frac{170695}{342144} a - \frac{1005959}{2052864}$, $\frac{1}{262766592} a^{19} - \frac{1}{65691648} a^{18} - \frac{29}{21897216} a^{17} - \frac{67}{5474304} a^{16} + \frac{2165}{43794432} a^{15} - \frac{13147}{2737152} a^{14} + \frac{5771}{7299072} a^{13} + \frac{15151}{3649536} a^{12} + \frac{531787}{87588864} a^{11} - \frac{606071}{65691648} a^{10} + \frac{1847291}{262766592} a^{9} + \frac{202315}{43794432} a^{8} - \frac{2234417}{87588864} a^{7} - \frac{257569}{5474304} a^{6} - \frac{6563269}{87588864} a^{5} + \frac{2045041}{14598144} a^{4} + \frac{40831}{405504} a^{3} + \frac{804323}{5474304} a^{2} - \frac{7915427}{16422912} a + \frac{2904469}{8211456}$, $\frac{1}{2102132736} a^{20} - \frac{1}{1051066368} a^{19} + \frac{7}{525533184} a^{18} + \frac{7}{3244032} a^{17} + \frac{4165}{350355456} a^{16} + \frac{14237}{175177728} a^{15} + \frac{387505}{175177728} a^{14} - \frac{77315}{14598144} a^{13} + \frac{538633}{233570304} a^{12} + \frac{15859955}{1051066368} a^{11} + \frac{38667715}{2102132736} a^{10} - \frac{2157481}{262766592} a^{9} + \frac{600347}{21233664} a^{8} + \frac{3890375}{350355456} a^{7} + \frac{12950683}{700710912} a^{6} - \frac{766969}{175177728} a^{5} - \frac{477163}{19464192} a^{4} - \frac{5249}{55296} a^{3} + \frac{48167215}{131383296} a^{2} - \frac{8732327}{32845824} a + \frac{8669365}{32845824}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1130875685700 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1959552 |
| The 171 conjugacy class representatives for t21n122 are not computed |
| Character table for t21n122 is not computed |
Intermediate fields
| 7.1.357911.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.6.0.1}{6} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.3.0.1}{3} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | $21$ | ${\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.37 | $x^{14} + 4 x^{13} - 3 x^{12} - 2 x^{11} + 2 x^{10} - 2 x^{9} + 4 x^{7} + 2 x^{6} + 2 x^{5} + 4 x^{3} + 4 x^{2} - 2 x - 3$ | $2$ | $7$ | $14$ | 14T21 | $[2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $71$ | 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 71.2.1.2 | $x^{2} + 142$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 71.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 71.6.3.2 | $x^{6} - 5041 x^{2} + 715822$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 2677 | Data not computed | ||||||