Normalized defining polynomial
\( x^{21} - 3 x^{19} - 2 x^{18} - 9 x^{17} - 12 x^{16} - 4 x^{15} + 81 x^{13} + 216 x^{12} + 459 x^{11} + 906 x^{10} + 367 x^{9} - 2196 x^{8} - 6807 x^{7} - 14494 x^{6} - 22572 x^{5} - 23256 x^{4} - 15184 x^{3} - 6048 x^{2} - 1344 x - 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1078228439505013455412874919936=-\,2^{14}\cdot 3^{21}\cdot 184607^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 184607$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} + \frac{1}{8} a^{13} + \frac{1}{4} a^{12} + \frac{3}{8} a^{11} + \frac{1}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{3}{8} a^{3} - \frac{3}{8} a - \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{25}{64} a^{14} - \frac{1}{4} a^{13} - \frac{1}{64} a^{12} + \frac{1}{32} a^{11} + \frac{3}{8} a^{10} - \frac{1}{4} a^{9} - \frac{31}{64} a^{8} + \frac{13}{32} a^{7} + \frac{23}{64} a^{6} - \frac{1}{8} a^{5} + \frac{23}{64} a^{4} + \frac{5}{32} a^{3} - \frac{11}{64} a^{2} + \frac{3}{16} a + \frac{5}{16}$, $\frac{1}{512} a^{17} + \frac{21}{512} a^{15} - \frac{33}{256} a^{14} + \frac{31}{512} a^{13} + \frac{33}{128} a^{12} - \frac{43}{128} a^{11} + \frac{1}{8} a^{10} - \frac{255}{512} a^{9} + \frac{19}{64} a^{8} - \frac{93}{512} a^{7} - \frac{59}{256} a^{6} + \frac{231}{512} a^{5} + \frac{7}{128} a^{4} - \frac{223}{512} a^{3} + \frac{17}{256} a^{2} - \frac{49}{128} a - \frac{21}{64}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} + \frac{21}{4096} a^{16} - \frac{27}{1024} a^{15} + \frac{675}{4096} a^{14} + \frac{35}{2048} a^{13} - \frac{109}{1024} a^{12} - \frac{205}{512} a^{11} + \frac{1153}{4096} a^{10} + \frac{75}{2048} a^{9} + \frac{1139}{4096} a^{8} - \frac{367}{1024} a^{7} + \frac{2003}{4096} a^{6} - \frac{729}{2048} a^{5} + \frac{1769}{4096} a^{4} - \frac{33}{128} a^{3} + \frac{95}{512} a^{2} + \frac{55}{128} a + \frac{85}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{25}{32768} a^{17} - \frac{75}{16384} a^{16} + \frac{891}{32768} a^{15} - \frac{21}{128} a^{14} - \frac{9}{512} a^{13} + \frac{13}{128} a^{12} + \frac{12625}{32768} a^{11} - \frac{2587}{8192} a^{10} - \frac{3257}{32768} a^{9} - \frac{5969}{16384} a^{8} + \frac{9035}{32768} a^{7} + \frac{1877}{4096} a^{6} + \frac{8781}{32768} a^{5} - \frac{249}{16384} a^{4} - \frac{1689}{4096} a^{3} - \frac{497}{2048} a^{2} - \frac{903}{2048} a - \frac{341}{1024}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} + \frac{1}{262144} a^{18} - \frac{9}{262144} a^{16} - \frac{15}{131072} a^{15} - \frac{1}{4096} a^{14} - \frac{1}{2048} a^{13} - \frac{175}{262144} a^{12} - \frac{67}{131072} a^{11} + \frac{191}{262144} a^{10} + \frac{161}{32768} a^{9} + \frac{2943}{262144} a^{8} + \frac{1845}{131072} a^{7} + \frac{573}{262144} a^{6} - \frac{3337}{65536} a^{5} - \frac{12317}{65536} a^{4} - \frac{1903}{4096} a^{3} + \frac{211}{16384} a^{2} + \frac{11}{4096} a + \frac{1}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3523003.59392 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1410877440 |
| The 429 conjugacy class representatives for t21n152 are not computed |
| Character table for t21n152 is not computed |
Intermediate fields
| 7.1.184607.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $15{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | $15{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{3}$ | ${\href{/LocalNumberField/41.10.0.1}{10} }{,}\,{\href{/LocalNumberField/41.5.0.1}{5} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.22 | $x^{14} + 4 x^{13} + x^{12} + 4 x^{11} - 2 x^{10} + 2 x^{9} - 2 x^{8} + 4 x^{7} + 2 x^{6} - 2 x^{5} - 2 x^{4} - 2 x^{3} - 2 x^{2} + 4 x + 1$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| 184607 | Data not computed | ||||||