Normalized defining polynomial
\( x^{21} - 6 x^{19} - 6 x^{18} + 36 x^{17} + 30 x^{16} - 138 x^{15} - 36 x^{14} + 447 x^{13} - 10 x^{12} - 1071 x^{11} + 888 x^{10} + 1111 x^{9} - 3042 x^{8} + 993 x^{7} + 2302 x^{6} - 1764 x^{5} + 648 x^{4} - 800 x^{3} + 864 x^{2} - 576 x + 128 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[3, 9]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(-1078228439505013455412874919936=-\,2^{14}\cdot 3^{21}\cdot 184607^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.92$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 184607$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{2} a^{14} - \frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{17} - \frac{1}{4} a^{15} + \frac{1}{4} a^{14} - \frac{1}{2} a^{13} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{2} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{3}{8} a^{7} + \frac{3}{8} a^{5} - \frac{1}{4} a^{4} - \frac{3}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{18} - \frac{1}{8} a^{16} + \frac{1}{8} a^{15} - \frac{1}{4} a^{14} + \frac{3}{8} a^{13} + \frac{3}{8} a^{12} + \frac{1}{4} a^{11} + \frac{7}{16} a^{10} + \frac{3}{8} a^{9} - \frac{3}{16} a^{8} - \frac{1}{2} a^{7} - \frac{5}{16} a^{6} + \frac{3}{8} a^{5} - \frac{3}{16} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{32} a^{19} - \frac{1}{16} a^{17} + \frac{1}{16} a^{16} - \frac{1}{8} a^{15} - \frac{5}{16} a^{14} - \frac{5}{16} a^{13} - \frac{3}{8} a^{12} + \frac{7}{32} a^{11} - \frac{5}{16} a^{10} + \frac{13}{32} a^{9} + \frac{1}{4} a^{8} - \frac{5}{32} a^{7} + \frac{3}{16} a^{6} + \frac{13}{32} a^{5} + \frac{7}{16} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{171302340405751303045353645376} a^{20} - \frac{335778578915648011530324607}{85651170202875651522676822688} a^{19} + \frac{1417505494082667026762530403}{85651170202875651522676822688} a^{18} + \frac{3594057842437578679361897147}{85651170202875651522676822688} a^{17} + \frac{1149577404813496688493709989}{10706396275359456440334602836} a^{16} - \frac{12166759593994926596290117609}{85651170202875651522676822688} a^{15} - \frac{41719334869145295811592904935}{85651170202875651522676822688} a^{14} + \frac{4882995540680871597117676209}{10706396275359456440334602836} a^{13} + \frac{30325650535600069419726236655}{171302340405751303045353645376} a^{12} + \frac{21344050133287968981868220333}{42825585101437825761338411344} a^{11} - \frac{69085612561806855871306981231}{171302340405751303045353645376} a^{10} - \frac{28905045413542476980611732403}{85651170202875651522676822688} a^{9} - \frac{69913926754835376404915808061}{171302340405751303045353645376} a^{8} + \frac{7846659248648635412352044509}{42825585101437825761338411344} a^{7} + \frac{34402763868838803350363610865}{171302340405751303045353645376} a^{6} + \frac{953693081032922925863684623}{5353198137679728220167301418} a^{5} - \frac{11580890789888785046462332315}{42825585101437825761338411344} a^{4} + \frac{3218617307051999231330336791}{10706396275359456440334602836} a^{3} - \frac{766986608972091469880733965}{10706396275359456440334602836} a^{2} + \frac{524406082462377352317189099}{5353198137679728220167301418} a - \frac{1095291449673832040807513439}{2676599068839864110083650709}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $11$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1825026.08868 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1410877440 |
| The 429 conjugacy class representatives for t21n152 are not computed |
| Character table for t21n152 is not computed |
Intermediate fields
| 7.1.184607.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }$ | ${\href{/LocalNumberField/13.10.0.1}{10} }{,}\,{\href{/LocalNumberField/13.5.0.1}{5} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }$ | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.10.0.1}{10} }{,}\,{\href{/LocalNumberField/19.5.0.1}{5} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | $15{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.9.0.1}{9} }$ | ${\href{/LocalNumberField/41.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }{,}\,{\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.12 | $x^{14} + x^{12} + 2 x^{9} + 2 x^{7} + 2 x^{6} + 2 x^{5} + 2 x^{4} + 2 x^{3} - 1$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| 184607 | Data not computed | ||||||