Normalized defining polynomial
\( x^{21} - 7 x^{20} - 45 x^{19} + 362 x^{18} + 799 x^{17} - 7508 x^{16} - 7656 x^{15} + 79875 x^{14} + 49998 x^{13} - 459906 x^{12} - 252543 x^{11} + 1367403 x^{10} + 782753 x^{9} - 1809622 x^{8} - 897807 x^{7} + 1116746 x^{6} + 430780 x^{5} - 303555 x^{4} - 87913 x^{3} + 25235 x^{2} + 7546 x + 343 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(988509426193021817935320621873627136=2^{18}\cdot 7^{14}\cdot 11^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $51.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{7} a^{9} - \frac{3}{7} a^{8} - \frac{1}{7} a^{7} - \frac{1}{7} a^{5} - \frac{3}{7} a^{4} + \frac{1}{7} a^{3}$, $\frac{1}{7} a^{10} - \frac{3}{7} a^{8} - \frac{3}{7} a^{7} - \frac{1}{7} a^{6} + \frac{1}{7} a^{5} - \frac{1}{7} a^{4} + \frac{3}{7} a^{3}$, $\frac{1}{7} a^{11} + \frac{2}{7} a^{8} + \frac{3}{7} a^{7} + \frac{1}{7} a^{6} + \frac{3}{7} a^{5} + \frac{1}{7} a^{4} + \frac{3}{7} a^{3}$, $\frac{1}{7} a^{12} + \frac{2}{7} a^{8} + \frac{3}{7} a^{7} + \frac{3}{7} a^{6} + \frac{3}{7} a^{5} + \frac{2}{7} a^{4} - \frac{2}{7} a^{3}$, $\frac{1}{7} a^{13} + \frac{2}{7} a^{8} - \frac{2}{7} a^{7} + \frac{3}{7} a^{6} - \frac{3}{7} a^{5} - \frac{3}{7} a^{4} - \frac{2}{7} a^{3}$, $\frac{1}{7} a^{14} - \frac{3}{7} a^{8} - \frac{2}{7} a^{7} - \frac{3}{7} a^{6} - \frac{1}{7} a^{5} - \frac{3}{7} a^{4} - \frac{2}{7} a^{3}$, $\frac{1}{21} a^{15} - \frac{1}{21} a^{13} + \frac{1}{21} a^{12} + \frac{1}{21} a^{11} - \frac{1}{21} a^{10} + \frac{1}{21} a^{9} + \frac{5}{21} a^{8} - \frac{10}{21} a^{7} + \frac{1}{21} a^{6} - \frac{2}{7} a^{5} + \frac{1}{3} a^{4} - \frac{10}{21} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{147} a^{16} - \frac{1}{49} a^{15} + \frac{5}{147} a^{14} + \frac{1}{21} a^{13} - \frac{8}{147} a^{12} - \frac{10}{147} a^{11} - \frac{8}{147} a^{10} - \frac{10}{147} a^{9} - \frac{31}{147} a^{8} + \frac{46}{147} a^{7} + \frac{4}{49} a^{6} + \frac{16}{147} a^{5} + \frac{2}{21} a^{4} + \frac{2}{21} a^{3} - \frac{3}{7} a^{2} - \frac{1}{3} a$, $\frac{1}{147} a^{17} + \frac{1}{49} a^{15} + \frac{1}{147} a^{14} + \frac{2}{49} a^{13} - \frac{2}{49} a^{12} - \frac{10}{147} a^{11} + \frac{1}{147} a^{10} + \frac{3}{49} a^{9} - \frac{11}{49} a^{8} + \frac{59}{147} a^{7} + \frac{17}{147} a^{6} - \frac{1}{147} a^{5} + \frac{2}{21} a^{3} + \frac{1}{21} a^{2} - \frac{1}{3}$, $\frac{1}{441} a^{18} + \frac{1}{441} a^{17} - \frac{1}{441} a^{15} - \frac{8}{441} a^{14} - \frac{1}{63} a^{13} + \frac{5}{147} a^{12} + \frac{4}{63} a^{11} + \frac{2}{147} a^{10} - \frac{29}{441} a^{9} - \frac{17}{63} a^{8} + \frac{19}{147} a^{7} + \frac{92}{441} a^{6} - \frac{1}{63} a^{5} - \frac{5}{21} a^{4} - \frac{1}{63} a^{3} - \frac{1}{3} a^{2} - \frac{4}{9} a - \frac{2}{9}$, $\frac{1}{441} a^{19} - \frac{1}{441} a^{17} - \frac{1}{441} a^{16} - \frac{1}{63} a^{15} + \frac{1}{441} a^{14} + \frac{22}{441} a^{13} + \frac{13}{441} a^{12} - \frac{22}{441} a^{11} + \frac{4}{63} a^{10} - \frac{3}{49} a^{9} - \frac{202}{441} a^{8} - \frac{31}{63} a^{7} - \frac{18}{49} a^{6} - \frac{2}{9} a^{5} - \frac{22}{63} a^{4} + \frac{16}{63} a^{3} - \frac{1}{9} a^{2} + \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{590523477729356804013609217885539} a^{20} - \frac{15580673018953633150907211140}{196841159243118934671203072628513} a^{19} - \frac{13780634575107435841500192721}{590523477729356804013609217885539} a^{18} - \frac{1559500242777709531716498639058}{590523477729356804013609217885539} a^{17} - \frac{625263754986037887374975386330}{590523477729356804013609217885539} a^{16} - \frac{557711655858078678300592169636}{590523477729356804013609217885539} a^{15} + \frac{41989417577716417386469668259984}{590523477729356804013609217885539} a^{14} + \frac{5918048931144486895663204365769}{590523477729356804013609217885539} a^{13} - \frac{27887833030465555099261965641101}{590523477729356804013609217885539} a^{12} - \frac{17077468048444302778323917678699}{590523477729356804013609217885539} a^{11} + \frac{1874165308671192312420139577603}{65613719747706311557067690876171} a^{10} + \frac{38822102298613999316498071730006}{590523477729356804013609217885539} a^{9} - \frac{138673252636319152482221610917947}{590523477729356804013609217885539} a^{8} + \frac{3457160069884002335554001968}{1178689576306101405216784866039} a^{7} + \frac{208813614850772895906729233329243}{590523477729356804013609217885539} a^{6} - \frac{29960392567768469780987114271202}{84360496818479543430515602555077} a^{5} + \frac{37908762146873603516871159874903}{84360496818479543430515602555077} a^{4} - \frac{5738128959484003122783029981929}{84360496818479543430515602555077} a^{3} + \frac{4827173179899624984350987427329}{12051499545497077632930800365011} a^{2} + \frac{274201318550225810027950911275}{1721642792213868233275828623573} a - \frac{132552699098950905978273602581}{573880930737956077758609541191}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 452833489306 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 21 |
| The 5 conjugacy class representatives for $C_7:C_3$ |
| Character table for $C_7:C_3$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.7.272225149504.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.7.272225149504.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{7}$ | R | R | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 11 | Data not computed | ||||||