Normalized defining polynomial
\( x^{21} - 10 x^{20} - 121 x^{19} + 1307 x^{18} + 4542 x^{17} - 64072 x^{16} - 25868 x^{15} + 1426632 x^{14} - 1772761 x^{13} - 13279613 x^{12} + 31799230 x^{11} + 27913196 x^{10} - 124437061 x^{9} + 24979735 x^{8} + 151364107 x^{7} - 76035219 x^{6} - 60674037 x^{5} + 33872275 x^{4} + 9603255 x^{3} - 3925720 x^{2} - 693778 x + 60829 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(968684802489943031204050398865611194973820125134848=2^{14}\cdot 37^{7}\cdot 43^{6}\cdot 21491^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $267.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 43, 21491$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5} a^{15} + \frac{1}{5} a^{14} + \frac{1}{5} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{9} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{16} - \frac{1}{5} a^{14} + \frac{1}{5} a^{13} - \frac{2}{5} a^{12} - \frac{1}{5} a^{11} + \frac{1}{5} a^{10} + \frac{1}{5} a^{9} - \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{5} a^{17} + \frac{2}{5} a^{14} - \frac{2}{5} a^{13} - \frac{1}{5} a^{10} + \frac{2}{5} a^{9} + \frac{1}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{18} + \frac{1}{5} a^{14} - \frac{2}{5} a^{12} + \frac{1}{5} a^{11} + \frac{1}{5} a^{10} - \frac{2}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{5} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{325} a^{19} + \frac{1}{13} a^{18} + \frac{32}{325} a^{17} - \frac{23}{325} a^{16} + \frac{3}{325} a^{15} - \frac{41}{325} a^{14} - \frac{154}{325} a^{13} - \frac{21}{325} a^{12} - \frac{128}{325} a^{11} - \frac{12}{25} a^{10} - \frac{149}{325} a^{9} - \frac{42}{325} a^{8} - \frac{58}{325} a^{7} + \frac{59}{325} a^{6} + \frac{103}{325} a^{5} + \frac{98}{325} a^{4} - \frac{3}{325} a^{3} - \frac{146}{325} a^{2} - \frac{59}{325} a - \frac{48}{325}$, $\frac{1}{410327817942770597167865713643953753958077519918093478244477718388945725} a^{20} + \frac{107910060463469243703286926574549976335808141470578056562525339151678}{82065563588554119433573142728790750791615503983618695648895543677789145} a^{19} + \frac{33746785953736141427916282091887672906749735383094149370636936746175407}{410327817942770597167865713643953753958077519918093478244477718388945725} a^{18} - \frac{18915315992791659401332679437090064989176623112955789998095313635878543}{410327817942770597167865713643953753958077519918093478244477718388945725} a^{17} + \frac{33121056737390988417971194924339509651269206244736436157472920909651213}{410327817942770597167865713643953753958077519918093478244477718388945725} a^{16} - \frac{13887259614274409617482627645653342021384038558230958325611079581952961}{410327817942770597167865713643953753958077519918093478244477718388945725} a^{15} - \frac{178169732946481549208585479151371185212047961122080845120825912488780114}{410327817942770597167865713643953753958077519918093478244477718388945725} a^{14} + \frac{2208068493930386042907554803610019224845686729560342432230678163959623}{31563678303290045935989670280304134919852116916776421403421362952995825} a^{13} - \frac{20954625677287517742518527077747181875301263600360372938627988208320468}{410327817942770597167865713643953753958077519918093478244477718388945725} a^{12} - \frac{38122767975072436622445241249527336747395675397792659885685253948832016}{410327817942770597167865713643953753958077519918093478244477718388945725} a^{11} - \frac{126491239268861039631417643838521073902616433097978524038969575968915879}{410327817942770597167865713643953753958077519918093478244477718388945725} a^{10} - \frac{75720035788942578804494566011189413139075206815634330216621058368786907}{410327817942770597167865713643953753958077519918093478244477718388945725} a^{9} + \frac{32169786137122375329257338224940180820528160432720608195291257971454677}{410327817942770597167865713643953753958077519918093478244477718388945725} a^{8} - \frac{13440239399913464019944738323709613166662748289411980891783654485581926}{410327817942770597167865713643953753958077519918093478244477718388945725} a^{7} - \frac{113882063093550651363468853369972691090447272092982347140684596051416452}{410327817942770597167865713643953753958077519918093478244477718388945725} a^{6} - \frac{102756344501290280628039245962510212275343094645416908341245258616834842}{410327817942770597167865713643953753958077519918093478244477718388945725} a^{5} + \frac{149840826258535434446555213091816811279729424891901314981033062223098342}{410327817942770597167865713643953753958077519918093478244477718388945725} a^{4} + \frac{7071741599703473074826455269568433672225568372693061223715048375134894}{410327817942770597167865713643953753958077519918093478244477718388945725} a^{3} - \frac{85423340199094827562332180124300231052923866360387571617114684442065394}{410327817942770597167865713643953753958077519918093478244477718388945725} a^{2} + \frac{143159346794146860225954879429696630314479579636226555631351508459909442}{410327817942770597167865713643953753958077519918093478244477718388945725} a - \frac{5021409455564019328902536800621828552665254854412925704621754379629393}{82065563588554119433573142728790750791615503983618695648895543677789145}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9396111061110000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2058 |
| The 140 conjugacy class representatives for t21n32 are not computed |
| Character table for t21n32 is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.7.0.1}{7} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{7}$ | $21$ | $21$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | R | $21$ | R | $21$ | $21$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $37$ | 37.7.0.1 | $x^{7} - 4 x + 5$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 37.14.7.1 | $x^{14} - 405224 x^{8} + 41051622544 x^{2} - 2373296928325$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 43 | Data not computed | ||||||
| 21491 | Data not computed | ||||||