Normalized defining polynomial
\( x^{21} - 31 x^{19} - 3 x^{18} + 362 x^{17} + 32 x^{16} - 2119 x^{15} - 158 x^{14} + 6826 x^{13} + \cdots + 1 \)
Invariants
| Degree: | $21$ |
| |
| Signature: | $[21, 0]$ |
| |
| Discriminant: |
\(94142881806955162927406195366237\)
\(\medspace = 7^{14}\cdot 173^{9}\)
|
| |
| Root discriminant: | \(33.31\) |
| |
| Galois root discriminant: | $7^{2/3}173^{1/2}\approx 48.13065200407494$ | ||
| Ramified primes: |
\(7\), \(173\)
|
| |
| Discriminant root field: | \(\Q(\sqrt{173}) \) | ||
| $\Aut(K/\Q)$: | $C_3$ |
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
| This field has no CM subfields. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{6}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{16}-\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{7}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}-\frac{1}{2}a$, $\frac{1}{2}a^{17}-\frac{1}{2}a^{12}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{8}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}a^{2}$, $\frac{1}{14}a^{18}+\frac{3}{14}a^{17}+\frac{3}{14}a^{16}-\frac{1}{7}a^{15}-\frac{1}{14}a^{13}-\frac{3}{14}a^{12}+\frac{2}{7}a^{11}+\frac{3}{14}a^{9}+\frac{3}{7}a^{8}-\frac{3}{14}a^{7}+\frac{3}{14}a^{6}+\frac{5}{14}a^{4}-\frac{3}{14}a^{3}+\frac{2}{7}a^{2}-\frac{5}{14}a+\frac{3}{7}$, $\frac{1}{14}a^{19}+\frac{1}{14}a^{17}+\frac{3}{14}a^{16}-\frac{1}{14}a^{15}-\frac{1}{14}a^{14}+\frac{3}{7}a^{12}+\frac{1}{7}a^{11}+\frac{3}{14}a^{10}+\frac{2}{7}a^{9}-\frac{1}{2}a^{8}+\frac{5}{14}a^{7}-\frac{1}{7}a^{6}-\frac{1}{7}a^{5}+\frac{3}{14}a^{4}-\frac{1}{14}a^{3}-\frac{3}{14}a^{2}+\frac{3}{14}$, $\frac{1}{162934304791286}a^{20}-\frac{88026754681}{162934304791286}a^{19}+\frac{770132756654}{81467152395643}a^{18}-\frac{2607635156019}{11638164627949}a^{17}+\frac{1751212016901}{23276329255898}a^{16}-\frac{16170348231445}{162934304791286}a^{15}-\frac{31896696514475}{162934304791286}a^{14}+\frac{23609362288305}{162934304791286}a^{13}+\frac{27042954172520}{81467152395643}a^{12}+\frac{78251361463763}{162934304791286}a^{11}+\frac{51359584672889}{162934304791286}a^{10}-\frac{34741355338729}{162934304791286}a^{9}-\frac{37116913859171}{81467152395643}a^{8}+\frac{25558031868333}{162934304791286}a^{7}+\frac{25550390568197}{81467152395643}a^{6}+\frac{6305989792553}{81467152395643}a^{5}+\frac{14719118160162}{81467152395643}a^{4}+\frac{1046377285263}{23276329255898}a^{3}-\frac{31921751560399}{162934304791286}a^{2}-\frac{50861426584869}{162934304791286}a+\frac{20693501531267}{81467152395643}$
| Monogenic: | Not computed | |
| Index: | $1$ | |
| Inessential primes: | None |
Class group and class number
| Ideal class group: | Trivial group, which has order $1$ (assuming GRH) |
| |
| Narrow class group: | Trivial group, which has order $1$ (assuming GRH) |
|
Unit group
| Rank: | $20$ |
| |
| Torsion generator: |
\( -1 \)
(order $2$)
|
| |
| Fundamental units: |
$\frac{241736426362034}{81467152395643}a^{20}-\frac{97729167094114}{81467152395643}a^{19}-\frac{10\cdots 07}{11638164627949}a^{18}+\frac{23\cdots 84}{81467152395643}a^{17}+\frac{86\cdots 20}{81467152395643}a^{16}-\frac{27\cdots 79}{81467152395643}a^{15}-\frac{50\cdots 03}{81467152395643}a^{14}+\frac{24\cdots 01}{11638164627949}a^{13}+\frac{16\cdots 23}{81467152395643}a^{12}-\frac{50\cdots 51}{81467152395643}a^{11}-\frac{28\cdots 95}{81467152395643}a^{10}+\frac{72\cdots 60}{81467152395643}a^{9}+\frac{29\cdots 77}{81467152395643}a^{8}-\frac{46\cdots 19}{81467152395643}a^{7}-\frac{15\cdots 43}{81467152395643}a^{6}+\frac{10\cdots 57}{81467152395643}a^{5}+\frac{53\cdots 98}{11638164627949}a^{4}-\frac{74\cdots 44}{81467152395643}a^{3}-\frac{33\cdots 23}{81467152395643}a^{2}+\frac{169777123424575}{81467152395643}a+\frac{129102919564606}{11638164627949}$, $\frac{533724032552540}{81467152395643}a^{20}-\frac{24105479043471}{11638164627949}a^{19}-\frac{16\cdots 01}{81467152395643}a^{18}+\frac{36\cdots 25}{81467152395643}a^{17}+\frac{19\cdots 66}{81467152395643}a^{16}-\frac{43\cdots 60}{81467152395643}a^{15}-\frac{15\cdots 09}{11638164627949}a^{14}+\frac{26\cdots 81}{81467152395643}a^{13}+\frac{35\cdots 21}{81467152395643}a^{12}-\frac{76\cdots 00}{81467152395643}a^{11}-\frac{63\cdots 52}{81467152395643}a^{10}+\frac{95\cdots 11}{81467152395643}a^{9}+\frac{63\cdots 52}{81467152395643}a^{8}-\frac{36\cdots 83}{81467152395643}a^{7}-\frac{33\cdots 85}{81467152395643}a^{6}-\frac{10\cdots 16}{81467152395643}a^{5}+\frac{73\cdots 37}{81467152395643}a^{4}+\frac{48\cdots 52}{81467152395643}a^{3}-\frac{54\cdots 31}{81467152395643}a^{2}-\frac{260155958644319}{11638164627949}a+\frac{11\cdots 94}{81467152395643}$, $\frac{148352081158277}{81467152395643}a^{20}-\frac{204895834248407}{162934304791286}a^{19}-\frac{45\cdots 85}{81467152395643}a^{18}+\frac{54\cdots 11}{162934304791286}a^{17}+\frac{10\cdots 81}{162934304791286}a^{16}-\frac{64\cdots 61}{162934304791286}a^{15}-\frac{61\cdots 07}{162934304791286}a^{14}+\frac{18\cdots 97}{81467152395643}a^{13}+\frac{95\cdots 22}{81467152395643}a^{12}-\frac{57\cdots 96}{81467152395643}a^{11}-\frac{48\cdots 23}{23276329255898}a^{10}+\frac{90\cdots 49}{81467152395643}a^{9}+\frac{34\cdots 87}{162934304791286}a^{8}-\frac{14\cdots 77}{162934304791286}a^{7}-\frac{93\cdots 54}{81467152395643}a^{6}+\frac{28\cdots 59}{81467152395643}a^{5}+\frac{48\cdots 17}{162934304791286}a^{4}-\frac{94\cdots 11}{162934304791286}a^{3}-\frac{52\cdots 95}{162934304791286}a^{2}+\frac{22\cdots 55}{81467152395643}a+\frac{203736323938155}{23276329255898}$, $a$, $\frac{635276877148379}{162934304791286}a^{20}-\frac{151543519019391}{162934304791286}a^{19}-\frac{19\cdots 93}{162934304791286}a^{18}+\frac{399438600027681}{23276329255898}a^{17}+\frac{11\cdots 03}{81467152395643}a^{16}-\frac{49\cdots 19}{23276329255898}a^{15}-\frac{13\cdots 27}{162934304791286}a^{14}+\frac{11\cdots 49}{81467152395643}a^{13}+\frac{42\cdots 81}{162934304791286}a^{12}-\frac{61\cdots 35}{162934304791286}a^{11}-\frac{76\cdots 69}{162934304791286}a^{10}+\frac{31\cdots 25}{81467152395643}a^{9}+\frac{55\cdots 39}{11638164627949}a^{8}+\frac{18\cdots 33}{81467152395643}a^{7}-\frac{57\cdots 61}{23276329255898}a^{6}-\frac{17\cdots 29}{81467152395643}a^{5}+\frac{88\cdots 07}{162934304791286}a^{4}+\frac{72\cdots 46}{11638164627949}a^{3}-\frac{63\cdots 05}{162934304791286}a^{2}-\frac{19\cdots 26}{81467152395643}a+\frac{635971238936020}{81467152395643}$, $\frac{402726592036711}{81467152395643}a^{20}-\frac{262311109222115}{162934304791286}a^{19}-\frac{24\cdots 59}{162934304791286}a^{18}+\frac{405005621405930}{11638164627949}a^{17}+\frac{14\cdots 70}{81467152395643}a^{16}-\frac{68\cdots 05}{162934304791286}a^{15}-\frac{16\cdots 17}{162934304791286}a^{14}+\frac{41\cdots 89}{162934304791286}a^{13}+\frac{52\cdots 27}{162934304791286}a^{12}-\frac{58\cdots 27}{81467152395643}a^{11}-\frac{94\cdots 55}{162934304791286}a^{10}+\frac{14\cdots 75}{162934304791286}a^{9}+\frac{94\cdots 75}{162934304791286}a^{8}-\frac{25\cdots 61}{81467152395643}a^{7}-\frac{49\cdots 89}{162934304791286}a^{6}-\frac{10\cdots 86}{81467152395643}a^{5}+\frac{54\cdots 29}{81467152395643}a^{4}+\frac{66\cdots 75}{11638164627949}a^{3}-\frac{84\cdots 81}{162934304791286}a^{2}-\frac{44\cdots 89}{162934304791286}a+\frac{20\cdots 29}{162934304791286}$, $\frac{309853210687116}{81467152395643}a^{20}-\frac{139365314062983}{81467152395643}a^{19}-\frac{95\cdots 34}{81467152395643}a^{18}+\frac{33\cdots 30}{81467152395643}a^{17}+\frac{22\cdots 51}{162934304791286}a^{16}-\frac{39\cdots 25}{81467152395643}a^{15}-\frac{64\cdots 62}{81467152395643}a^{14}+\frac{23\cdots 26}{81467152395643}a^{13}+\frac{29\cdots 34}{11638164627949}a^{12}-\frac{13\cdots 65}{162934304791286}a^{11}-\frac{36\cdots 60}{81467152395643}a^{10}+\frac{28\cdots 91}{23276329255898}a^{9}+\frac{73\cdots 69}{162934304791286}a^{8}-\frac{12\cdots 69}{162934304791286}a^{7}-\frac{19\cdots 45}{81467152395643}a^{6}+\frac{13\cdots 68}{81467152395643}a^{5}+\frac{86\cdots 15}{162934304791286}a^{4}-\frac{18\cdots 95}{162934304791286}a^{3}-\frac{68\cdots 19}{162934304791286}a^{2}+\frac{14\cdots 45}{162934304791286}a+\frac{709794461767354}{81467152395643}$, $\frac{106327271625979}{81467152395643}a^{20}-\frac{94887774139051}{162934304791286}a^{19}-\frac{65\cdots 25}{162934304791286}a^{18}+\frac{23\cdots 45}{162934304791286}a^{17}+\frac{11\cdots 81}{23276329255898}a^{16}-\frac{27\cdots 49}{162934304791286}a^{15}-\frac{45\cdots 11}{162934304791286}a^{14}+\frac{16\cdots 51}{162934304791286}a^{13}+\frac{10\cdots 68}{11638164627949}a^{12}-\frac{50\cdots 31}{162934304791286}a^{11}-\frac{13\cdots 58}{81467152395643}a^{10}+\frac{75\cdots 97}{162934304791286}a^{9}+\frac{28\cdots 45}{162934304791286}a^{8}-\frac{75\cdots 05}{23276329255898}a^{7}-\frac{16\cdots 01}{162934304791286}a^{6}+\frac{13\cdots 99}{162934304791286}a^{5}+\frac{23\cdots 92}{81467152395643}a^{4}-\frac{28\cdots 11}{81467152395643}a^{3}-\frac{59\cdots 73}{162934304791286}a^{2}-\frac{117014040664038}{11638164627949}a+\frac{298161726976627}{23276329255898}$, $\frac{375798294165759}{162934304791286}a^{20}-\frac{138836906847815}{81467152395643}a^{19}-\frac{57\cdots 52}{81467152395643}a^{18}+\frac{531869961684541}{11638164627949}a^{17}+\frac{13\cdots 53}{162934304791286}a^{16}-\frac{87\cdots 99}{162934304791286}a^{15}-\frac{39\cdots 77}{81467152395643}a^{14}+\frac{51\cdots 49}{162934304791286}a^{13}+\frac{25\cdots 19}{162934304791286}a^{12}-\frac{78\cdots 21}{81467152395643}a^{11}-\frac{22\cdots 00}{81467152395643}a^{10}+\frac{25\cdots 61}{162934304791286}a^{9}+\frac{23\cdots 14}{81467152395643}a^{8}-\frac{10\cdots 73}{81467152395643}a^{7}-\frac{28\cdots 89}{162934304791286}a^{6}+\frac{80\cdots 13}{162934304791286}a^{5}+\frac{85\cdots 93}{162934304791286}a^{4}-\frac{16\cdots 25}{23276329255898}a^{3}-\frac{11\cdots 59}{162934304791286}a^{2}+\frac{22\cdots 07}{162934304791286}a+\frac{19\cdots 27}{81467152395643}$, $\frac{263888766231187}{23276329255898}a^{20}-\frac{405791254392511}{81467152395643}a^{19}-\frac{28\cdots 81}{81467152395643}a^{18}+\frac{97\cdots 23}{81467152395643}a^{17}+\frac{33\cdots 32}{81467152395643}a^{16}-\frac{11\cdots 65}{81467152395643}a^{15}-\frac{19\cdots 65}{81467152395643}a^{14}+\frac{14\cdots 43}{162934304791286}a^{13}+\frac{12\cdots 17}{162934304791286}a^{12}-\frac{41\cdots 71}{162934304791286}a^{11}-\frac{21\cdots 39}{162934304791286}a^{10}+\frac{42\cdots 39}{11638164627949}a^{9}+\frac{10\cdots 82}{81467152395643}a^{8}-\frac{19\cdots 81}{81467152395643}a^{7}-\frac{56\cdots 49}{81467152395643}a^{6}+\frac{89\cdots 59}{162934304791286}a^{5}+\frac{13\cdots 37}{81467152395643}a^{4}-\frac{66\cdots 99}{162934304791286}a^{3}-\frac{22\cdots 23}{162934304791286}a^{2}+\frac{28\cdots 91}{162934304791286}a+\frac{58\cdots 03}{162934304791286}$, $\frac{181581521682513}{81467152395643}a^{20}-\frac{55956727239480}{81467152395643}a^{19}-\frac{11\cdots 23}{162934304791286}a^{18}+\frac{23\cdots 21}{162934304791286}a^{17}+\frac{65\cdots 35}{81467152395643}a^{16}-\frac{13\cdots 16}{81467152395643}a^{15}-\frac{38\cdots 74}{81467152395643}a^{14}+\frac{16\cdots 61}{162934304791286}a^{13}+\frac{24\cdots 85}{162934304791286}a^{12}-\frac{46\cdots 29}{162934304791286}a^{11}-\frac{22\cdots 06}{81467152395643}a^{10}+\frac{25\cdots 57}{81467152395643}a^{9}+\frac{44\cdots 53}{162934304791286}a^{8}-\frac{42\cdots 89}{81467152395643}a^{7}-\frac{23\cdots 69}{162934304791286}a^{6}-\frac{86\cdots 61}{81467152395643}a^{5}+\frac{35\cdots 27}{11638164627949}a^{4}+\frac{26\cdots 06}{81467152395643}a^{3}-\frac{50\cdots 89}{23276329255898}a^{2}-\frac{858223900150018}{81467152395643}a+\frac{429694553232411}{81467152395643}$, $\frac{95541883114478}{11638164627949}a^{20}-\frac{65511902286255}{23276329255898}a^{19}-\frac{41\cdots 01}{162934304791286}a^{18}+\frac{50\cdots 70}{81467152395643}a^{17}+\frac{48\cdots 15}{162934304791286}a^{16}-\frac{12\cdots 59}{162934304791286}a^{15}-\frac{39\cdots 75}{23276329255898}a^{14}+\frac{73\cdots 75}{162934304791286}a^{13}+\frac{88\cdots 09}{162934304791286}a^{12}-\frac{20\cdots 39}{162934304791286}a^{11}-\frac{22\cdots 69}{23276329255898}a^{10}+\frac{13\cdots 39}{81467152395643}a^{9}+\frac{80\cdots 76}{81467152395643}a^{8}-\frac{11\cdots 77}{162934304791286}a^{7}-\frac{83\cdots 71}{162934304791286}a^{6}-\frac{13\cdots 22}{11638164627949}a^{5}+\frac{18\cdots 01}{162934304791286}a^{4}+\frac{11\cdots 33}{162934304791286}a^{3}-\frac{75\cdots 59}{81467152395643}a^{2}-\frac{22\cdots 54}{81467152395643}a+\frac{35\cdots 23}{162934304791286}$, $\frac{131086708557461}{23276329255898}a^{20}-\frac{182153125809609}{81467152395643}a^{19}-\frac{14\cdots 23}{81467152395643}a^{18}+\frac{84\cdots 33}{162934304791286}a^{17}+\frac{32\cdots 29}{162934304791286}a^{16}-\frac{71\cdots 02}{11638164627949}a^{15}-\frac{95\cdots 08}{81467152395643}a^{14}+\frac{60\cdots 25}{162934304791286}a^{13}+\frac{30\cdots 49}{81467152395643}a^{12}-\frac{12\cdots 51}{11638164627949}a^{11}-\frac{53\cdots 62}{81467152395643}a^{10}+\frac{11\cdots 59}{81467152395643}a^{9}+\frac{53\cdots 26}{81467152395643}a^{8}-\frac{12\cdots 49}{162934304791286}a^{7}-\frac{39\cdots 04}{11638164627949}a^{6}+\frac{44\cdots 76}{81467152395643}a^{5}+\frac{62\cdots 89}{81467152395643}a^{4}+\frac{42\cdots 71}{162934304791286}a^{3}-\frac{98\cdots 09}{162934304791286}a^{2}-\frac{11\cdots 10}{81467152395643}a+\frac{337137305167777}{23276329255898}$, $\frac{310257168558130}{81467152395643}a^{20}-\frac{294420101635685}{162934304791286}a^{19}-\frac{19\cdots 41}{162934304791286}a^{18}+\frac{517488540458439}{11638164627949}a^{17}+\frac{22\cdots 55}{162934304791286}a^{16}-\frac{43\cdots 78}{81467152395643}a^{15}-\frac{12\cdots 23}{162934304791286}a^{14}+\frac{52\cdots 23}{162934304791286}a^{13}+\frac{41\cdots 19}{162934304791286}a^{12}-\frac{15\cdots 27}{162934304791286}a^{11}-\frac{37\cdots 19}{81467152395643}a^{10}+\frac{11\cdots 37}{81467152395643}a^{9}+\frac{75\cdots 81}{162934304791286}a^{8}-\frac{81\cdots 33}{81467152395643}a^{7}-\frac{20\cdots 86}{81467152395643}a^{6}+\frac{22\cdots 48}{81467152395643}a^{5}+\frac{96\cdots 97}{162934304791286}a^{4}-\frac{32\cdots 63}{11638164627949}a^{3}-\frac{87\cdots 29}{162934304791286}a^{2}+\frac{448145104718623}{162934304791286}a+\frac{12\cdots 98}{81467152395643}$, $\frac{14\cdots 89}{162934304791286}a^{20}-\frac{283214718416211}{81467152395643}a^{19}-\frac{21\cdots 81}{81467152395643}a^{18}+\frac{948457024480009}{11638164627949}a^{17}+\frac{25\cdots 72}{81467152395643}a^{16}-\frac{15\cdots 07}{162934304791286}a^{15}-\frac{14\cdots 78}{81467152395643}a^{14}+\frac{96\cdots 47}{162934304791286}a^{13}+\frac{92\cdots 13}{162934304791286}a^{12}-\frac{40\cdots 19}{23276329255898}a^{11}-\frac{83\cdots 98}{81467152395643}a^{10}+\frac{20\cdots 93}{81467152395643}a^{9}+\frac{16\cdots 81}{162934304791286}a^{8}-\frac{24\cdots 03}{162934304791286}a^{7}-\frac{88\cdots 43}{162934304791286}a^{6}+\frac{68\cdots 71}{23276329255898}a^{5}+\frac{10\cdots 55}{81467152395643}a^{4}-\frac{11\cdots 99}{11638164627949}a^{3}-\frac{12\cdots 19}{11638164627949}a^{2}+\frac{97987646202049}{11638164627949}a+\frac{20\cdots 94}{81467152395643}$, $\frac{359104450583044}{81467152395643}a^{20}-\frac{157519804217175}{81467152395643}a^{19}-\frac{22\cdots 21}{162934304791286}a^{18}+\frac{37\cdots 19}{81467152395643}a^{17}+\frac{25\cdots 39}{162934304791286}a^{16}-\frac{89\cdots 69}{162934304791286}a^{15}-\frac{75\cdots 17}{81467152395643}a^{14}+\frac{53\cdots 45}{162934304791286}a^{13}+\frac{23\cdots 61}{81467152395643}a^{12}-\frac{78\cdots 33}{81467152395643}a^{11}-\frac{43\cdots 95}{81467152395643}a^{10}+\frac{11\cdots 19}{81467152395643}a^{9}+\frac{43\cdots 27}{81467152395643}a^{8}-\frac{70\cdots 41}{81467152395643}a^{7}-\frac{23\cdots 22}{81467152395643}a^{6}+\frac{30\cdots 85}{162934304791286}a^{5}+\frac{80\cdots 83}{11638164627949}a^{4}-\frac{19\cdots 69}{162934304791286}a^{3}-\frac{51\cdots 49}{81467152395643}a^{2}+\frac{120198114333033}{11638164627949}a+\frac{24\cdots 75}{162934304791286}$, $\frac{413191994015709}{162934304791286}a^{20}+\frac{19623172707883}{162934304791286}a^{19}-\frac{63\cdots 34}{81467152395643}a^{18}-\frac{18\cdots 17}{162934304791286}a^{17}+\frac{14\cdots 77}{162934304791286}a^{16}+\frac{20\cdots 95}{162934304791286}a^{15}-\frac{85\cdots 71}{162934304791286}a^{14}-\frac{10\cdots 79}{162934304791286}a^{13}+\frac{27\cdots 95}{162934304791286}a^{12}+\frac{41\cdots 03}{162934304791286}a^{11}-\frac{24\cdots 44}{81467152395643}a^{10}-\frac{53\cdots 27}{81467152395643}a^{9}+\frac{47\cdots 05}{162934304791286}a^{8}+\frac{15\cdots 57}{162934304791286}a^{7}-\frac{11\cdots 06}{81467152395643}a^{6}-\frac{10\cdots 59}{162934304791286}a^{5}+\frac{31\cdots 11}{162934304791286}a^{4}+\frac{11\cdots 15}{81467152395643}a^{3}+\frac{972622189038192}{11638164627949}a^{2}-\frac{10\cdots 77}{162934304791286}a-\frac{798084424122007}{81467152395643}$, $\frac{840457270482821}{162934304791286}a^{20}-\frac{232669234685117}{162934304791286}a^{19}-\frac{25\cdots 33}{162934304791286}a^{18}+\frac{46\cdots 95}{162934304791286}a^{17}+\frac{43\cdots 85}{23276329255898}a^{16}-\frac{28\cdots 90}{81467152395643}a^{15}-\frac{17\cdots 63}{162934304791286}a^{14}+\frac{18\cdots 86}{81467152395643}a^{13}+\frac{80\cdots 11}{23276329255898}a^{12}-\frac{51\cdots 86}{81467152395643}a^{11}-\frac{51\cdots 07}{81467152395643}a^{10}+\frac{12\cdots 61}{162934304791286}a^{9}+\frac{51\cdots 12}{81467152395643}a^{8}-\frac{24\cdots 41}{11638164627949}a^{7}-\frac{27\cdots 43}{81467152395643}a^{6}-\frac{14\cdots 10}{81467152395643}a^{5}+\frac{62\cdots 07}{81467152395643}a^{4}+\frac{50\cdots 86}{81467152395643}a^{3}-\frac{10\cdots 35}{162934304791286}a^{2}-\frac{351753039908881}{11638164627949}a+\frac{364585407330227}{23276329255898}$, $\frac{31835304848954}{11638164627949}a^{20}-\frac{123418446432147}{162934304791286}a^{19}-\frac{68\cdots 41}{81467152395643}a^{18}+\frac{12\cdots 22}{81467152395643}a^{17}+\frac{79\cdots 58}{81467152395643}a^{16}-\frac{30\cdots 25}{162934304791286}a^{15}-\frac{91\cdots 37}{162934304791286}a^{14}+\frac{92\cdots 39}{81467152395643}a^{13}+\frac{28\cdots 41}{162934304791286}a^{12}-\frac{50\cdots 87}{162934304791286}a^{11}-\frac{25\cdots 24}{81467152395643}a^{10}+\frac{37\cdots 90}{11638164627949}a^{9}+\frac{49\cdots 51}{162934304791286}a^{8}+\frac{32\cdots 60}{81467152395643}a^{7}-\frac{12\cdots 81}{81467152395643}a^{6}-\frac{27\cdots 47}{162934304791286}a^{5}+\frac{48\cdots 75}{162934304791286}a^{4}+\frac{87\cdots 13}{162934304791286}a^{3}-\frac{26\cdots 03}{162934304791286}a^{2}-\frac{40\cdots 25}{162934304791286}a+\frac{343356653296589}{162934304791286}$, $\frac{362273560755107}{81467152395643}a^{20}-\frac{15844051852175}{11638164627949}a^{19}-\frac{22\cdots 03}{162934304791286}a^{18}+\frac{23\cdots 50}{81467152395643}a^{17}+\frac{26\cdots 81}{162934304791286}a^{16}-\frac{56\cdots 81}{162934304791286}a^{15}-\frac{10\cdots 93}{11638164627949}a^{14}+\frac{35\cdots 11}{162934304791286}a^{13}+\frac{24\cdots 45}{81467152395643}a^{12}-\frac{49\cdots 17}{81467152395643}a^{11}-\frac{43\cdots 79}{81467152395643}a^{10}+\frac{61\cdots 82}{81467152395643}a^{9}+\frac{43\cdots 42}{81467152395643}a^{8}-\frac{30\cdots 70}{11638164627949}a^{7}-\frac{22\cdots 86}{81467152395643}a^{6}-\frac{18\cdots 55}{162934304791286}a^{5}+\frac{51\cdots 00}{81467152395643}a^{4}+\frac{79\cdots 35}{162934304791286}a^{3}-\frac{41\cdots 39}{81467152395643}a^{2}-\frac{20\cdots 80}{81467152395643}a+\frac{21\cdots 85}{162934304791286}$
|
| |
| Regulator: | \( 1629233271.9 \) (assuming GRH) |
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{21}\cdot(2\pi)^{0}\cdot 1629233271.9 \cdot 1}{2\cdot\sqrt{94142881806955162927406195366237}}\cr\approx \mathstrut & 0.17607165226 \end{aligned}\] (assuming GRH)
Galois group
| A solvable group of order 42 |
| The 7 conjugacy class representatives for $F_7$ |
| Character table for $F_7$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.7.12431698517.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | deg 42 |
| Degree 7 sibling: | 7.7.12431698517.1 |
| Degree 14 sibling: | 14.14.26736653147041339876997.1 |
| Minimal sibling: | 7.7.12431698517.1 |
Frobenius cycle types
| $p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/padicField/2.6.0.1}{6} }^{3}{,}\,{\href{/padicField/2.3.0.1}{3} }$ | ${\href{/padicField/3.6.0.1}{6} }^{3}{,}\,{\href{/padicField/3.3.0.1}{3} }$ | ${\href{/padicField/5.6.0.1}{6} }^{3}{,}\,{\href{/padicField/5.3.0.1}{3} }$ | R | ${\href{/padicField/11.6.0.1}{6} }^{3}{,}\,{\href{/padicField/11.3.0.1}{3} }$ | ${\href{/padicField/13.7.0.1}{7} }^{3}$ | ${\href{/padicField/17.6.0.1}{6} }^{3}{,}\,{\href{/padicField/17.3.0.1}{3} }$ | ${\href{/padicField/19.6.0.1}{6} }^{3}{,}\,{\href{/padicField/19.3.0.1}{3} }$ | ${\href{/padicField/23.3.0.1}{3} }^{7}$ | ${\href{/padicField/29.7.0.1}{7} }^{3}$ | ${\href{/padicField/31.3.0.1}{3} }^{7}$ | ${\href{/padicField/37.3.0.1}{3} }^{7}$ | ${\href{/padicField/41.7.0.1}{7} }^{3}$ | ${\href{/padicField/43.7.0.1}{7} }^{3}$ | ${\href{/padicField/47.3.0.1}{3} }^{7}$ | ${\href{/padicField/53.6.0.1}{6} }^{3}{,}\,{\href{/padicField/53.3.0.1}{3} }$ | ${\href{/padicField/59.6.0.1}{6} }^{3}{,}\,{\href{/padicField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
|
\(7\)
| 7.1.3.2a1.1 | $x^{3} + 7$ | $3$ | $1$ | $2$ | $C_3$ | $$[\ ]_{3}$$ |
| 7.2.3.4a1.2 | $x^{6} + 18 x^{5} + 117 x^{4} + 324 x^{3} + 351 x^{2} + 162 x + 34$ | $3$ | $2$ | $4$ | $C_6$ | $$[\ ]_{3}^{2}$$ | |
| 7.2.3.4a1.2 | $x^{6} + 18 x^{5} + 117 x^{4} + 324 x^{3} + 351 x^{2} + 162 x + 34$ | $3$ | $2$ | $4$ | $C_6$ | $$[\ ]_{3}^{2}$$ | |
| 7.2.3.4a1.2 | $x^{6} + 18 x^{5} + 117 x^{4} + 324 x^{3} + 351 x^{2} + 162 x + 34$ | $3$ | $2$ | $4$ | $C_6$ | $$[\ ]_{3}^{2}$$ | |
|
\(173\)
| 173.3.1.0a1.1 | $x^{3} + 2 x + 171$ | $1$ | $3$ | $0$ | $C_3$ | $$[\ ]^{3}$$ |
| 173.3.2.3a1.2 | $x^{6} + 4 x^{4} + 342 x^{3} + 4 x^{2} + 684 x + 29414$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
| 173.3.2.3a1.2 | $x^{6} + 4 x^{4} + 342 x^{3} + 4 x^{2} + 684 x + 29414$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ | |
| 173.3.2.3a1.2 | $x^{6} + 4 x^{4} + 342 x^{3} + 4 x^{2} + 684 x + 29414$ | $2$ | $3$ | $3$ | $C_6$ | $$[\ ]_{2}^{3}$$ |