Normalized defining polynomial
\( x^{21} - 31 x^{19} - 3 x^{18} + 362 x^{17} + 32 x^{16} - 2119 x^{15} - 158 x^{14} + 6826 x^{13} + 676 x^{12} - 12509 x^{11} - 2021 x^{10} + 12809 x^{9} + 3175 x^{8} - 6710 x^{7} - 2254 x^{6} + 1442 x^{5} + 571 x^{4} - 97 x^{3} - 44 x^{2} + 2 x + 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(94142881806955162927406195366237=7^{14}\cdot 173^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.31$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{14} a^{18} + \frac{3}{14} a^{17} + \frac{3}{14} a^{16} - \frac{1}{7} a^{15} - \frac{1}{14} a^{13} - \frac{3}{14} a^{12} + \frac{2}{7} a^{11} + \frac{3}{14} a^{9} + \frac{3}{7} a^{8} - \frac{3}{14} a^{7} + \frac{3}{14} a^{6} + \frac{5}{14} a^{4} - \frac{3}{14} a^{3} + \frac{2}{7} a^{2} - \frac{5}{14} a + \frac{3}{7}$, $\frac{1}{14} a^{19} + \frac{1}{14} a^{17} + \frac{3}{14} a^{16} - \frac{1}{14} a^{15} - \frac{1}{14} a^{14} + \frac{3}{7} a^{12} + \frac{1}{7} a^{11} + \frac{3}{14} a^{10} + \frac{2}{7} a^{9} - \frac{1}{2} a^{8} + \frac{5}{14} a^{7} - \frac{1}{7} a^{6} - \frac{1}{7} a^{5} + \frac{3}{14} a^{4} - \frac{1}{14} a^{3} - \frac{3}{14} a^{2} + \frac{3}{14}$, $\frac{1}{162934304791286} a^{20} - \frac{88026754681}{162934304791286} a^{19} + \frac{770132756654}{81467152395643} a^{18} - \frac{2607635156019}{11638164627949} a^{17} + \frac{1751212016901}{23276329255898} a^{16} - \frac{16170348231445}{162934304791286} a^{15} - \frac{31896696514475}{162934304791286} a^{14} + \frac{23609362288305}{162934304791286} a^{13} + \frac{27042954172520}{81467152395643} a^{12} + \frac{78251361463763}{162934304791286} a^{11} + \frac{51359584672889}{162934304791286} a^{10} - \frac{34741355338729}{162934304791286} a^{9} - \frac{37116913859171}{81467152395643} a^{8} + \frac{25558031868333}{162934304791286} a^{7} + \frac{25550390568197}{81467152395643} a^{6} + \frac{6305989792553}{81467152395643} a^{5} + \frac{14719118160162}{81467152395643} a^{4} + \frac{1046377285263}{23276329255898} a^{3} - \frac{31921751560399}{162934304791286} a^{2} - \frac{50861426584869}{162934304791286} a + \frac{20693501531267}{81467152395643}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1629233271.9 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 42 |
| The 7 conjugacy class representatives for $F_7$ |
| Character table for $F_7$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.7.12431698517.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 7 sibling: | 7.7.12431698517.1 |
| Degree 14 sibling: | 14.14.26736653147041339876997.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/2.3.0.1}{3} }$ | ${\href{/LocalNumberField/3.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| $173$ | 173.3.0.1 | $x^{3} - x + 5$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 173.6.3.1 | $x^{6} - 346 x^{4} + 29929 x^{2} - 129442925$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 173.6.3.1 | $x^{6} - 346 x^{4} + 29929 x^{2} - 129442925$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 173.6.3.1 | $x^{6} - 346 x^{4} + 29929 x^{2} - 129442925$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ |