Normalized defining polynomial
\( x^{21} - 66 x^{19} - 44 x^{18} + 1809 x^{17} + 2412 x^{16} - 25818 x^{15} - 53244 x^{14} + 190980 x^{13} + 596048 x^{12} - 505845 x^{11} - 3430854 x^{10} - 1998597 x^{9} + 8267868 x^{8} + 15095739 x^{7} + 2654998 x^{6} - 20077956 x^{5} - 29537352 x^{4} - 20959728 x^{3} - 8485344 x^{2} - 1885632 x - 179584 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(93620997925765436584656964317628337389092864=2^{14}\cdot 3^{21}\cdot 17^{4}\cdot 23^{5}\cdot 61^{2}\cdot 64879^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $124.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 23, 61, 64879$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} + \frac{1}{4} a^{13} - \frac{1}{2} a^{12} + \frac{1}{8} a^{11} + \frac{1}{4} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} + \frac{3}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{13}{32} a^{14} + \frac{1}{8} a^{13} - \frac{31}{64} a^{12} + \frac{7}{32} a^{11} - \frac{3}{32} a^{10} + \frac{3}{8} a^{9} - \frac{3}{16} a^{8} + \frac{3}{8} a^{7} - \frac{5}{64} a^{6} - \frac{1}{4} a^{5} - \frac{29}{64} a^{4} + \frac{9}{32} a^{3} - \frac{9}{64} a^{2} + \frac{1}{16} a + \frac{7}{16}$, $\frac{1}{512} a^{17} + \frac{11}{256} a^{15} + \frac{37}{128} a^{14} - \frac{47}{512} a^{13} + \frac{51}{128} a^{12} + \frac{15}{256} a^{11} + \frac{41}{128} a^{10} - \frac{31}{128} a^{9} - \frac{9}{32} a^{8} + \frac{11}{512} a^{7} + \frac{61}{256} a^{6} - \frac{125}{512} a^{5} - \frac{29}{128} a^{4} - \frac{173}{512} a^{3} + \frac{43}{256} a^{2} - \frac{27}{128} a - \frac{7}{64}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} + \frac{11}{2048} a^{16} + \frac{13}{512} a^{15} - \frac{1367}{4096} a^{14} + \frac{661}{2048} a^{13} + \frac{323}{2048} a^{12} - \frac{179}{512} a^{11} - \frac{241}{1024} a^{10} + \frac{205}{512} a^{9} + \frac{299}{4096} a^{8} + \frac{153}{1024} a^{7} + \frac{143}{4096} a^{6} + \frac{579}{2048} a^{5} - \frac{1477}{4096} a^{4} + \frac{59}{256} a^{3} + \frac{93}{512} a^{2} - \frac{11}{128} a + \frac{71}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{13}{16384} a^{17} + \frac{15}{8192} a^{16} - \frac{1575}{32768} a^{15} - \frac{1029}{4096} a^{14} + \frac{7193}{16384} a^{13} - \frac{2729}{8192} a^{12} + \frac{475}{8192} a^{11} + \frac{479}{2048} a^{10} - \frac{2981}{32768} a^{9} - \frac{2041}{16384} a^{8} - \frac{9273}{32768} a^{7} - \frac{1427}{4096} a^{6} - \frac{7889}{32768} a^{5} + \frac{8093}{16384} a^{4} - \frac{1167}{4096} a^{3} - \frac{627}{2048} a^{2} + \frac{627}{2048} a + \frac{441}{1024}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} + \frac{1}{131072} a^{18} + \frac{27}{32768} a^{17} - \frac{1215}{262144} a^{16} + \frac{7543}{131072} a^{15} + \frac{64417}{131072} a^{14} - \frac{6959}{32768} a^{13} + \frac{8677}{65536} a^{12} - \frac{1713}{32768} a^{11} + \frac{43003}{262144} a^{10} - \frac{5469}{16384} a^{9} + \frac{31771}{262144} a^{8} - \frac{49911}{131072} a^{7} - \frac{109153}{262144} a^{6} - \frac{7787}{65536} a^{5} + \frac{30137}{65536} a^{4} + \frac{63}{512} a^{3} - \frac{7231}{16384} a^{2} + \frac{1673}{4096} a + \frac{299}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1620972933150000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 1410877440 |
| The 429 conjugacy class representatives for t21n152 are not computed |
| Character table for t21n152 is not computed |
Intermediate fields
| 7.7.25367689.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/11.10.0.1}{10} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.5.0.1}{5} }$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/29.10.0.1}{10} }{,}\,{\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }^{3}$ | $18{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | $15{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.33 | $x^{14} + 4 x^{13} + x^{12} + 2 x^{11} + 4 x^{9} + 2 x^{7} + 2 x^{6} - 2 x^{5} + 2 x^{4} + 2 x^{3} + 2 x^{2} + 2 x - 3$ | $2$ | $7$ | $14$ | $C_2 \wr C_7$ | $[2, 2, 2, 2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $17$ | 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 17.4.3.3 | $x^{4} + 51$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 17.4.0.1 | $x^{4} - x + 11$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| $23$ | 23.3.2.1 | $x^{3} - 23$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.3.0.1 | $x^{3} - x + 4$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 23.6.3.1 | $x^{6} - 46 x^{4} + 529 x^{2} - 194672$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 61 | Data not computed | ||||||
| 64879 | Data not computed | ||||||