Normalized defining polynomial
\( x^{21} - x^{20} - 215 x^{19} + 640 x^{18} + 18645 x^{17} - 91995 x^{16} - 765632 x^{15} + 5866036 x^{14} + 10971340 x^{13} - 189950090 x^{12} + 237521250 x^{11} + 2913566900 x^{10} - 11018686250 x^{9} - 8525511250 x^{8} + 134494325000 x^{7} - 269648962500 x^{6} - 217979037500 x^{5} + 1983614003125 x^{4} - 4146411671875 x^{3} + 4497739562500 x^{2} - 2601507421875 x + 637943828125 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(931192007497491224702187602363538249235506312513828125=5^{7}\cdot 71^{3}\cdot 541^{2}\cdot 283583^{3}\cdot 70634931391^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $371.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 71, 541, 283583, 70634931391$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} - \frac{1}{5} a^{8} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2}$, $\frac{1}{25} a^{10} - \frac{1}{25} a^{9} + \frac{1}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{7}{25} a^{4} + \frac{11}{25} a^{3} + \frac{1}{5} a$, $\frac{1}{125} a^{11} - \frac{1}{125} a^{10} + \frac{2}{25} a^{9} + \frac{8}{25} a^{8} + \frac{4}{25} a^{7} + \frac{1}{25} a^{6} - \frac{7}{125} a^{5} + \frac{36}{125} a^{4} + \frac{3}{25} a^{3} + \frac{2}{25} a^{2} + \frac{1}{5}$, $\frac{1}{125} a^{12} - \frac{1}{125} a^{10} + \frac{2}{25} a^{9} + \frac{12}{25} a^{8} - \frac{2}{5} a^{7} + \frac{48}{125} a^{6} - \frac{21}{125} a^{5} - \frac{4}{125} a^{4} + \frac{3}{25} a^{3} - \frac{8}{25} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{625} a^{13} - \frac{1}{625} a^{12} - \frac{6}{125} a^{9} + \frac{21}{125} a^{8} + \frac{168}{625} a^{7} - \frac{139}{625} a^{6} + \frac{42}{125} a^{5} - \frac{8}{25} a^{3} + \frac{12}{25} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{3125} a^{14} - \frac{1}{3125} a^{13} - \frac{2}{625} a^{12} + \frac{2}{625} a^{11} - \frac{1}{625} a^{10} - \frac{9}{625} a^{9} + \frac{1468}{3125} a^{8} - \frac{189}{3125} a^{7} - \frac{194}{625} a^{6} - \frac{72}{625} a^{5} - \frac{24}{125} a^{4} - \frac{17}{125} a^{3} - \frac{9}{25} a^{2} - \frac{9}{25} a - \frac{2}{5}$, $\frac{1}{15625} a^{15} - \frac{1}{15625} a^{14} - \frac{1}{3125} a^{13} + \frac{11}{3125} a^{12} + \frac{4}{3125} a^{11} + \frac{1}{3125} a^{10} - \frac{1182}{15625} a^{9} + \frac{4961}{15625} a^{8} + \frac{74}{3125} a^{7} + \frac{794}{3125} a^{6} - \frac{131}{625} a^{5} - \frac{24}{625} a^{4} + \frac{3}{125} a^{3} + \frac{39}{125} a^{2} - \frac{2}{5} a - \frac{4}{25}$, $\frac{1}{15625} a^{16} - \frac{1}{15625} a^{14} - \frac{1}{3125} a^{13} - \frac{2}{625} a^{12} - \frac{2}{625} a^{11} + \frac{298}{15625} a^{10} + \frac{1304}{15625} a^{9} + \frac{1171}{15625} a^{8} - \frac{1501}{3125} a^{7} + \frac{1109}{3125} a^{6} - \frac{257}{625} a^{5} - \frac{14}{625} a^{4} + \frac{12}{25} a^{3} - \frac{21}{125} a^{2} + \frac{12}{25} a - \frac{4}{25}$, $\frac{1}{78125} a^{17} - \frac{1}{78125} a^{16} + \frac{9}{15625} a^{13} + \frac{31}{15625} a^{12} + \frac{293}{78125} a^{11} + \frac{861}{78125} a^{10} - \frac{658}{15625} a^{9} + \frac{68}{625} a^{8} - \frac{1304}{3125} a^{7} + \frac{252}{625} a^{6} - \frac{109}{625} a^{5} + \frac{48}{125} a^{4} + \frac{52}{125} a^{3} + \frac{9}{25} a^{2} + \frac{8}{25} a + \frac{1}{25}$, $\frac{1}{390625} a^{18} - \frac{1}{390625} a^{17} + \frac{9}{78125} a^{14} - \frac{19}{78125} a^{13} - \frac{82}{390625} a^{12} + \frac{861}{390625} a^{11} - \frac{1158}{78125} a^{10} - \frac{272}{3125} a^{9} + \frac{3646}{15625} a^{8} + \frac{916}{3125} a^{7} + \frac{679}{3125} a^{6} - \frac{8}{125} a^{5} - \frac{159}{625} a^{4} - \frac{9}{125} a^{3} + \frac{27}{125} a^{2} - \frac{4}{125} a - \frac{7}{25}$, $\frac{1}{1953125} a^{19} - \frac{1}{1953125} a^{18} + \frac{1}{390625} a^{17} + \frac{9}{390625} a^{16} - \frac{1}{390625} a^{15} - \frac{19}{390625} a^{14} - \frac{482}{1953125} a^{13} - \frac{2989}{1953125} a^{12} - \frac{63}{78125} a^{11} - \frac{1134}{390625} a^{10} - \frac{1008}{15625} a^{9} + \frac{993}{3125} a^{8} - \frac{223}{3125} a^{7} - \frac{1473}{3125} a^{6} - \frac{52}{125} a^{5} + \frac{16}{125} a^{4} + \frac{193}{625} a^{3} - \frac{119}{625} a^{2} + \frac{12}{25} a + \frac{46}{125}$, $\frac{1}{1953125} a^{20} - \frac{1}{1953125} a^{18} + \frac{1}{390625} a^{17} - \frac{7}{390625} a^{16} + \frac{1}{78125} a^{15} - \frac{177}{1953125} a^{14} + \frac{379}{1953125} a^{13} + \frac{4346}{1953125} a^{12} + \frac{177}{78125} a^{11} + \frac{3521}{390625} a^{10} - \frac{78}{15625} a^{9} + \frac{6934}{15625} a^{8} + \frac{437}{3125} a^{7} + \frac{178}{3125} a^{6} + \frac{162}{625} a^{5} + \frac{82}{625} a^{4} + \frac{54}{625} a^{3} - \frac{4}{625} a^{2} - \frac{2}{5} a - \frac{29}{125}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 67032677351100000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 22044960 |
| The 261 conjugacy class representatives for t21n144 are not computed |
| Character table for t21n144 is not computed |
Intermediate fields
| 7.7.20134393.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }{,}\,{\href{/LocalNumberField/2.7.0.1}{7} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | R | $18{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{6}$ | $15{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ | $18{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.10.0.1}{10} }{,}\,{\href{/LocalNumberField/53.5.0.1}{5} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 5.4.0.1 | $x^{4} + x^{2} - 2 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 5.6.3.1 | $x^{6} - 10 x^{4} + 25 x^{2} - 500$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $71$ | $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{71}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.6.0.1 | $x^{6} - 2 x + 13$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 71.6.3.1 | $x^{6} - 142 x^{4} + 5041 x^{2} - 1431644$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 541 | Data not computed | ||||||
| 283583 | Data not computed | ||||||
| 70634931391 | Data not computed | ||||||