Normalized defining polynomial
\( x^{21} - 87 x^{19} - 58 x^{18} + 3132 x^{17} + 4176 x^{16} - 58899 x^{15} - 120582 x^{14} + 586728 x^{13} + 1761112 x^{12} - 2435130 x^{11} - 13256364 x^{10} - 4665665 x^{9} + 43241436 x^{8} + 70388133 x^{7} - 3531910 x^{6} - 129793212 x^{5} - 179073144 x^{4} - 125497616 x^{3} - 50688288 x^{2} - 11264064 x - 1072768 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8766456641448373848515625225224872939068899328=2^{14}\cdot 3^{21}\cdot 17^{2}\cdot 29^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $154.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{8} a^{15} - \frac{1}{2} a^{14} - \frac{3}{8} a^{13} + \frac{1}{4} a^{12} - \frac{3}{8} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{8} a^{3} + \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{1088} a^{16} + \frac{25}{544} a^{15} - \frac{507}{1088} a^{14} - \frac{1}{17} a^{13} - \frac{15}{272} a^{12} - \frac{67}{136} a^{11} - \frac{179}{1088} a^{10} + \frac{9}{272} a^{9} - \frac{59}{136} a^{8} - \frac{21}{136} a^{7} + \frac{243}{544} a^{6} + \frac{3}{34} a^{5} + \frac{463}{1088} a^{4} + \frac{21}{544} a^{3} + \frac{353}{1088} a^{2} + \frac{3}{16} a - \frac{7}{16}$, $\frac{1}{8704} a^{17} + \frac{257}{8704} a^{15} - \frac{957}{4352} a^{14} - \frac{847}{2176} a^{13} + \frac{9}{272} a^{12} - \frac{3843}{8704} a^{11} - \frac{2035}{4352} a^{10} + \frac{133}{272} a^{9} - \frac{63}{1088} a^{8} + \frac{91}{4352} a^{7} - \frac{67}{2176} a^{6} - \frac{3249}{8704} a^{5} + \frac{751}{2176} a^{4} - \frac{2835}{8704} a^{3} - \frac{1651}{4352} a^{2} - \frac{13}{128} a - \frac{1}{64}$, $\frac{1}{69632} a^{18} - \frac{1}{34816} a^{17} + \frac{1}{69632} a^{16} + \frac{545}{17408} a^{15} - \frac{3305}{8704} a^{14} - \frac{1421}{8704} a^{13} + \frac{2237}{69632} a^{12} + \frac{321}{2176} a^{11} - \frac{7205}{17408} a^{10} - \frac{103}{8704} a^{9} - \frac{12973}{34816} a^{8} - \frac{3407}{8704} a^{7} - \frac{5273}{69632} a^{6} - \frac{11889}{34816} a^{5} - \frac{14219}{69632} a^{4} + \frac{5}{1088} a^{3} + \frac{299}{8704} a^{2} - \frac{29}{128} a - \frac{63}{256}$, $\frac{1}{557056} a^{19} - \frac{1}{139264} a^{18} + \frac{5}{557056} a^{17} + \frac{65}{278528} a^{16} + \frac{379}{34816} a^{15} - \frac{21691}{69632} a^{14} + \frac{86413}{557056} a^{13} + \frac{64339}{278528} a^{12} + \frac{53195}{139264} a^{11} + \frac{351}{34816} a^{10} + \frac{125067}{278528} a^{9} + \frac{56335}{139264} a^{8} + \frac{45143}{557056} a^{7} + \frac{10949}{34816} a^{6} - \frac{24007}{557056} a^{5} - \frac{7125}{278528} a^{4} - \frac{10533}{69632} a^{3} + \frac{1403}{34816} a^{2} + \frac{309}{2048} a - \frac{449}{1024}$, $\frac{1}{4456448} a^{20} + \frac{1}{2228224} a^{19} - \frac{19}{4456448} a^{18} + \frac{5}{139264} a^{17} - \frac{337}{1114112} a^{16} + \frac{1289}{557056} a^{15} + \frac{413309}{4456448} a^{14} + \frac{432125}{1114112} a^{13} - \frac{12175}{278528} a^{12} + \frac{82463}{557056} a^{11} - \frac{1074597}{2228224} a^{10} - \frac{29861}{69632} a^{9} - \frac{1420865}{4456448} a^{8} - \frac{28323}{131072} a^{7} - \frac{1283047}{4456448} a^{6} - \frac{13893}{65536} a^{5} + \frac{401975}{1114112} a^{4} - \frac{4221}{69632} a^{3} + \frac{41831}{278528} a^{2} - \frac{1809}{4096} a - \frac{835}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 24264773716900000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 244944 |
| The 72 conjugacy class representatives for t21n112 are not computed |
| Character table for t21n112 is not computed |
Intermediate fields
| 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | $21$ | R | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | $21$ | R | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.0.1 | $x^{7} - x + 1$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 2.14.14.24 | $x^{14} - 3 x^{12} + 2 x^{11} + 2 x^{10} + 4 x^{8} + 4 x^{7} + 2 x^{6} + 2 x^{4} + 2 x^{2} + 2 x + 3$ | $2$ | $7$ | $14$ | 14T9 | $[2, 2, 2, 2]^{7}$ | |
| 3 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.3.2.1 | $x^{3} - 17$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 17.3.0.1 | $x^{3} - x + 3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 29 | Data not computed | ||||||