Normalized defining polynomial
\( x^{21} - 6 x^{20} - 33 x^{19} + 233 x^{18} + 329 x^{17} - 3262 x^{16} - 1293 x^{15} + 23199 x^{14} + 2230 x^{13} - 94736 x^{12} - 9112 x^{11} + 230162 x^{10} + 58671 x^{9} - 317626 x^{8} - 158283 x^{7} + 200827 x^{6} + 166516 x^{5} - 10000 x^{4} - 42256 x^{3} - 13584 x^{2} - 1600 x - 64 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(86620507852136986313803229728551889=313^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.10$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $313$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{12} a^{13} + \frac{1}{12} a^{11} - \frac{1}{4} a^{10} + \frac{1}{12} a^{9} - \frac{1}{6} a^{8} - \frac{1}{12} a^{6} - \frac{1}{2} a^{5} - \frac{5}{12} a^{4} + \frac{5}{12} a^{3} + \frac{5}{12} a^{2} - \frac{1}{3}$, $\frac{1}{12} a^{14} + \frac{1}{12} a^{12} + \frac{1}{12} a^{10} - \frac{1}{6} a^{9} - \frac{1}{4} a^{8} + \frac{1}{6} a^{7} + \frac{1}{4} a^{6} - \frac{1}{6} a^{5} - \frac{1}{12} a^{4} + \frac{1}{6} a^{3} - \frac{1}{4} a^{2} + \frac{1}{6} a$, $\frac{1}{48} a^{15} - \frac{1}{48} a^{14} + \frac{1}{24} a^{12} + \frac{1}{8} a^{10} - \frac{5}{48} a^{9} + \frac{5}{24} a^{8} + \frac{1}{12} a^{7} + \frac{5}{48} a^{6} + \frac{19}{48} a^{5} - \frac{1}{48} a^{4} + \frac{23}{48} a^{3} - \frac{1}{4} a^{2} - \frac{5}{12} a - \frac{1}{6}$, $\frac{1}{48} a^{16} - \frac{1}{48} a^{14} - \frac{1}{24} a^{13} + \frac{1}{24} a^{12} + \frac{1}{24} a^{11} - \frac{11}{48} a^{10} + \frac{1}{48} a^{9} - \frac{1}{24} a^{8} + \frac{3}{16} a^{7} - \frac{5}{12} a^{6} - \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{5}{16} a^{3} - \frac{1}{12} a^{2} - \frac{1}{12} a + \frac{1}{6}$, $\frac{1}{144} a^{17} - \frac{1}{144} a^{15} - \frac{1}{72} a^{14} - \frac{1}{72} a^{13} + \frac{7}{72} a^{12} - \frac{5}{48} a^{11} - \frac{35}{144} a^{10} + \frac{1}{24} a^{9} + \frac{5}{144} a^{8} - \frac{1}{18} a^{7} - \frac{7}{72} a^{6} - \frac{5}{24} a^{5} - \frac{49}{144} a^{4} + \frac{1}{4} a^{3} - \frac{1}{3} a^{2} + \frac{7}{18} a + \frac{4}{9}$, $\frac{1}{144} a^{18} - \frac{1}{144} a^{16} + \frac{1}{144} a^{15} - \frac{5}{144} a^{14} + \frac{1}{72} a^{13} - \frac{1}{16} a^{12} - \frac{11}{144} a^{11} - \frac{1}{12} a^{10} - \frac{11}{72} a^{9} + \frac{5}{72} a^{8} + \frac{17}{72} a^{7} - \frac{13}{48} a^{6} - \frac{7}{36} a^{5} + \frac{7}{48} a^{4} - \frac{1}{48} a^{3} + \frac{17}{36} a^{2} - \frac{17}{36} a + \frac{1}{6}$, $\frac{1}{77472} a^{19} - \frac{17}{6456} a^{18} + \frac{257}{77472} a^{17} - \frac{101}{77472} a^{16} + \frac{673}{77472} a^{15} + \frac{497}{19368} a^{14} - \frac{1043}{25824} a^{13} - \frac{3719}{77472} a^{12} - \frac{135}{4304} a^{11} - \frac{5141}{38736} a^{10} + \frac{3631}{19368} a^{9} + \frac{3751}{19368} a^{8} + \frac{1567}{8608} a^{7} - \frac{1663}{19368} a^{6} + \frac{3045}{8608} a^{5} - \frac{593}{8608} a^{4} + \frac{3355}{38736} a^{3} - \frac{5951}{19368} a^{2} - \frac{386}{807} a + \frac{175}{1614}$, $\frac{1}{133627122440117568} a^{20} - \frac{74916987557}{33406780610029392} a^{19} - \frac{439974689972497}{133627122440117568} a^{18} - \frac{90685668287015}{44542374146705856} a^{17} + \frac{877764881029775}{133627122440117568} a^{16} + \frac{23477211222909}{3711864512225488} a^{15} - \frac{5168889787038853}{133627122440117568} a^{14} - \frac{3208829822013755}{133627122440117568} a^{13} + \frac{402369381927127}{8351695152507348} a^{12} + \frac{3425747083335863}{33406780610029392} a^{11} - \frac{430839593733611}{11135593536676464} a^{10} - \frac{12498832499450699}{66813561220058784} a^{9} + \frac{21563708192058079}{133627122440117568} a^{8} - \frac{7979209062190633}{33406780610029392} a^{7} + \frac{26709238078426973}{133627122440117568} a^{6} + \frac{2014628366775527}{44542374146705856} a^{5} + \frac{28597342543902733}{66813561220058784} a^{4} + \frac{3635469743627705}{11135593536676464} a^{3} + \frac{824554552990765}{8351695152507348} a^{2} + \frac{213463533899539}{927966128056372} a - \frac{44906663582095}{231991532014093}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 97964797589.8 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 21 |
| The 5 conjugacy class representatives for $C_7:C_3$ |
| Character table for $C_7:C_3$ |
Intermediate fields
| 3.3.97969.1, 7.7.9597924961.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.7.9597924961.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/3.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 313 | Data not computed | ||||||