Normalized defining polynomial
\( x^{21} - 84 x^{19} + 2835 x^{17} - 50722 x^{15} - 870 x^{14} + 533022 x^{13} + 29820 x^{12} - 3420396 x^{11} - 411600 x^{10} + 13380332 x^{9} + 2910348 x^{8} - 30526707 x^{7} - 11030292 x^{6} + 35970438 x^{5} + 20929272 x^{4} - 14384083 x^{3} - 14891982 x^{2} - 4254852 x - 405224 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8594175910050075590605445090065778283994939392=2^{18}\cdot 3^{28}\cdot 7^{21}\cdot 37^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $153.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} + \frac{1}{3} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{11} - \frac{1}{3} a^{9} + \frac{1}{3} a^{8} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{3} a^{12} - \frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3}$, $\frac{1}{3} a^{13} + \frac{1}{3} a^{9} + \frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{9} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{6} a^{15} - \frac{1}{3} a^{9} + \frac{1}{3} a^{6} + \frac{1}{3} a^{3} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{6} a^{16} + \frac{1}{3} a^{9} - \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2} a^{2} - \frac{1}{3}$, $\frac{1}{444} a^{17} + \frac{9}{148} a^{15} + \frac{5}{37} a^{13} + \frac{7}{74} a^{11} + \frac{3}{74} a^{10} + \frac{1}{3} a^{9} - \frac{1}{222} a^{8} + \frac{15}{37} a^{7} - \frac{43}{222} a^{6} - \frac{50}{111} a^{5} + \frac{25}{74} a^{4} + \frac{217}{444} a^{3} - \frac{1}{2} a^{2} - \frac{1}{4} a + \frac{1}{6}$, $\frac{1}{444} a^{18} + \frac{9}{148} a^{16} + \frac{5}{37} a^{14} + \frac{7}{74} a^{12} + \frac{3}{74} a^{11} - \frac{25}{74} a^{9} + \frac{15}{37} a^{8} + \frac{35}{74} a^{7} + \frac{8}{37} a^{6} + \frac{25}{74} a^{5} + \frac{23}{148} a^{4} + \frac{1}{6} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{1}{3}$, $\frac{1}{65712} a^{19} + \frac{4}{4107} a^{17} - \frac{1}{12} a^{16} + \frac{1355}{65712} a^{15} - \frac{1}{12} a^{14} + \frac{3721}{32856} a^{13} - \frac{145}{10952} a^{12} - \frac{113}{888} a^{11} - \frac{31}{5476} a^{10} - \frac{6319}{16428} a^{9} - \frac{139}{1369} a^{8} - \frac{7783}{16428} a^{7} - \frac{6641}{16428} a^{6} - \frac{11179}{65712} a^{5} - \frac{3}{148} a^{4} + \frac{341}{888} a^{3} - \frac{1}{4} a^{2} - \frac{1}{16} a + \frac{11}{24}$, $\frac{1}{55989182536980900576607663365044129202432} a^{20} + \frac{36874433806061189408965886284058905}{27994591268490450288303831682522064601216} a^{19} - \frac{347266003237500095188754617443604937}{3499323908561306286037978960315258075152} a^{18} + \frac{257046127209507850683771842631567481}{1749661954280653143018989480157629037576} a^{17} - \frac{3278466789052420925895414968220929239853}{55989182536980900576607663365044129202432} a^{16} + \frac{231214518201071138119097886129215762107}{27994591268490450288303831682522064601216} a^{15} - \frac{677667505281435871623476036624024743321}{9331530422830150096101277227507354867072} a^{14} + \frac{1039701619013433651351695498999661761549}{9331530422830150096101277227507354867072} a^{13} - \frac{332931262566045852251855816832912871409}{9331530422830150096101277227507354867072} a^{12} - \frac{137746425399510019599927909133512383053}{1166441302853768762012659653438419358384} a^{11} + \frac{182647320028513174992703903827650004367}{4665765211415075048050638613753677433536} a^{10} - \frac{390199395404860824168051662153254671911}{2332882605707537524025319306876838716768} a^{9} - \frac{4807257220799834079491083706554295129881}{13997295634245225144151915841261032300608} a^{8} - \frac{3244199967383401061040850441201967325503}{13997295634245225144151915841261032300608} a^{7} - \frac{24593113725924887339264625859207107823531}{55989182536980900576607663365044129202432} a^{6} - \frac{3595717501216972993926368038100844842173}{27994591268490450288303831682522064601216} a^{5} - \frac{245981475932827762217343177600145527707}{756610574824066224008211667095190935168} a^{4} - \frac{106542929321441003197595344969004513069}{378305287412033112004105833547595467584} a^{3} - \frac{3343546125723876762323483138837892371}{40897868909408985081524954978118428928} a^{2} - \frac{2566999861519063911340568472497566621}{10224467227352246270381238744529607232} a - \frac{4146194300626640929507745671864077683}{10224467227352246270381238744529607232}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 56207658188100000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6174 |
| The 45 conjugacy class representatives for t21n43 |
| Character table for t21n43 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | $21$ | $21$ | R | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| 37 | Data not computed | ||||||