Normalized defining polynomial
\( x^{21} - 7 x^{20} - 17 x^{19} + 210 x^{18} - 16 x^{17} - 2663 x^{16} + 2439 x^{15} + 18749 x^{14} - 25099 x^{13} - 80928 x^{12} + 128445 x^{11} + 222874 x^{10} - 385353 x^{9} - 394086 x^{8} + 698150 x^{7} + 436857 x^{6} - 736448 x^{5} - 284524 x^{4} + 401643 x^{3} + 95619 x^{2} - 81870 x - 14407 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(83880263553291436673128474467106816=2^{30}\cdot 809^{6}\cdot 16693^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $46.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 809, 16693$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $\frac{1}{19} a^{19} + \frac{5}{19} a^{18} + \frac{7}{19} a^{17} - \frac{2}{19} a^{15} - \frac{8}{19} a^{14} + \frac{2}{19} a^{13} + \frac{4}{19} a^{12} - \frac{5}{19} a^{11} - \frac{2}{19} a^{10} + \frac{9}{19} a^{9} - \frac{6}{19} a^{8} + \frac{8}{19} a^{7} + \frac{1}{19} a^{6} + \frac{4}{19} a^{5} + \frac{2}{19} a^{4} + \frac{5}{19} a^{3} + \frac{8}{19} a^{2} - \frac{6}{19} a - \frac{7}{19}$, $\frac{1}{399105079123989612001} a^{20} + \frac{3364692173802945105}{399105079123989612001} a^{19} + \frac{54183778373241567005}{399105079123989612001} a^{18} - \frac{54710077028753836809}{399105079123989612001} a^{17} + \frac{186369931515440945385}{399105079123989612001} a^{16} - \frac{105959297144827148026}{399105079123989612001} a^{15} + \frac{127072092096020032646}{399105079123989612001} a^{14} + \frac{35343575031758341207}{399105079123989612001} a^{13} - \frac{73347621638300600508}{399105079123989612001} a^{12} - \frac{139009294690297137797}{399105079123989612001} a^{11} + \frac{190660115943302345166}{399105079123989612001} a^{10} - \frac{72300213449532896937}{399105079123989612001} a^{9} - \frac{90940042053945908910}{399105079123989612001} a^{8} - \frac{9436772609883885682}{399105079123989612001} a^{7} - \frac{87875310059774367857}{399105079123989612001} a^{6} - \frac{84197873324105301842}{399105079123989612001} a^{5} - \frac{137137315137742070263}{399105079123989612001} a^{4} + \frac{153588523056230793047}{399105079123989612001} a^{3} + \frac{18812839113128255741}{399105079123989612001} a^{2} + \frac{52516875176241058537}{399105079123989612001} a - \frac{65482402263371970527}{399105079123989612001}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 57142668417.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 367416 |
| The 228 conjugacy class representatives for t21n115 are not computed |
| Character table for t21n115 is not computed |
Intermediate fields
| 7.7.670188544.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | $21$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }$ | ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{4}$ | ${\href{/LocalNumberField/47.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }$ | ${\href{/LocalNumberField/53.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ |
| 2.12.24.142 | $x^{12} + 8 x^{11} + 32 x^{10} - 92 x^{9} - 70 x^{8} + 96 x^{7} + 80 x^{6} + 112 x^{5} + 76 x^{4} + 96 x^{3} - 32 x^{2} - 112 x + 120$ | $4$ | $3$ | $24$ | 12T45 | $[8/3, 8/3]_{3}^{6}$ | |
| 809 | Data not computed | ||||||
| 16693 | Data not computed | ||||||