Normalized defining polynomial
\( x^{21} - 4 x^{20} - 60 x^{19} + 224 x^{18} + 1382 x^{17} - 4786 x^{16} - 16074 x^{15} + 51216 x^{14} + 104984 x^{13} - 301449 x^{12} - 405653 x^{11} + 1007842 x^{10} + 952245 x^{9} - 1910342 x^{8} - 1353475 x^{7} + 1951543 x^{6} + 1093353 x^{5} - 915746 x^{4} - 403833 x^{3} + 109604 x^{2} + 19366 x + 521 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(828649541657828886975358787618681750730529=13^{14}\cdot 29^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $99.11$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(377=13\cdot 29\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{377}(256,·)$, $\chi_{377}(1,·)$, $\chi_{377}(326,·)$, $\chi_{377}(74,·)$, $\chi_{377}(139,·)$, $\chi_{377}(204,·)$, $\chi_{377}(16,·)$, $\chi_{377}(81,·)$, $\chi_{377}(146,·)$, $\chi_{377}(339,·)$, $\chi_{377}(152,·)$, $\chi_{377}(94,·)$, $\chi_{377}(198,·)$, $\chi_{377}(165,·)$, $\chi_{377}(170,·)$, $\chi_{377}(107,·)$, $\chi_{377}(373,·)$, $\chi_{377}(248,·)$, $\chi_{377}(313,·)$, $\chi_{377}(315,·)$, $\chi_{377}(53,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{2669} a^{18} - \frac{386}{2669} a^{17} + \frac{682}{2669} a^{16} - \frac{18}{2669} a^{15} - \frac{437}{2669} a^{14} - \frac{195}{2669} a^{13} + \frac{876}{2669} a^{12} + \frac{22}{157} a^{11} + \frac{236}{2669} a^{10} - \frac{41}{157} a^{9} - \frac{1325}{2669} a^{8} + \frac{50}{2669} a^{7} + \frac{1273}{2669} a^{6} - \frac{347}{2669} a^{5} - \frac{622}{2669} a^{4} - \frac{970}{2669} a^{3} + \frac{1112}{2669} a^{2} - \frac{251}{2669} a + \frac{60}{2669}$, $\frac{1}{2669} a^{19} + \frac{1150}{2669} a^{17} - \frac{997}{2669} a^{16} + \frac{622}{2669} a^{15} - \frac{730}{2669} a^{14} + \frac{338}{2669} a^{13} - \frac{453}{2669} a^{12} + \frac{474}{2669} a^{11} - \frac{347}{2669} a^{10} - \frac{798}{2669} a^{9} + \frac{1048}{2669} a^{8} - \frac{779}{2669} a^{7} - \frac{65}{2669} a^{6} - \frac{1114}{2669} a^{5} - \frac{852}{2669} a^{4} + \frac{352}{2669} a^{3} - \frac{728}{2669} a^{2} - \frac{742}{2669} a - \frac{861}{2669}$, $\frac{1}{2338962517181940080639413554061118698758553} a^{20} - \frac{106744440522588547938062076733762968563}{2338962517181940080639413554061118698758553} a^{19} + \frac{289901333401393063704142704615004057228}{2338962517181940080639413554061118698758553} a^{18} - \frac{919576789738071137467928084324577121044094}{2338962517181940080639413554061118698758553} a^{17} + \frac{177440928824095908898446258632171843496714}{2338962517181940080639413554061118698758553} a^{16} - \frac{557947294105534201285688780940904521906589}{2338962517181940080639413554061118698758553} a^{15} - \frac{52746818777133819188693357138975692057770}{2338962517181940080639413554061118698758553} a^{14} + \frac{11840568057426958115013731910583837134978}{2338962517181940080639413554061118698758553} a^{13} + \frac{848321808569779165720676728621938109165746}{2338962517181940080639413554061118698758553} a^{12} + \frac{906840788092266440321626840382719152416907}{2338962517181940080639413554061118698758553} a^{11} - \frac{737875740759164678728393226645347103234883}{2338962517181940080639413554061118698758553} a^{10} + \frac{825833021441943047182333437238294735329111}{2338962517181940080639413554061118698758553} a^{9} - \frac{875830631765236225467285824326494731785923}{2338962517181940080639413554061118698758553} a^{8} + \frac{264500667399009853987523539171124075857263}{2338962517181940080639413554061118698758553} a^{7} + \frac{219493872516988812893588600009423358965853}{2338962517181940080639413554061118698758553} a^{6} - \frac{775530062316662442747288651302740286737109}{2338962517181940080639413554061118698758553} a^{5} - \frac{1080137933855755060574040906918219278374447}{2338962517181940080639413554061118698758553} a^{4} - \frac{404629742545760335504304021355527335702539}{2338962517181940080639413554061118698758553} a^{3} + \frac{439923283549333821044313401269979508997241}{2338962517181940080639413554061118698758553} a^{2} - \frac{310967551305874757978652386837211612006644}{2338962517181940080639413554061118698758553} a - \frac{914851860526258191510528182630654588775805}{2338962517181940080639413554061118698758553}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 117685929270000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.169.1, 7.7.594823321.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | $21$ | $21$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | $21$ | $21$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{7}$ | $21$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| 29 | Data not computed | ||||||