Normalized defining polynomial
\( x^{21} - 4 x^{20} - 114 x^{19} + 488 x^{18} + 4946 x^{17} - 23362 x^{16} - 100260 x^{15} + 557394 x^{14} + 893184 x^{13} - 6986867 x^{12} - 1446343 x^{11} + 45520578 x^{10} - 23590055 x^{9} - 154124034 x^{8} + 143234027 x^{7} + 261729665 x^{6} - 315720051 x^{5} - 199051958 x^{4} + 300106465 x^{3} + 36273150 x^{2} - 102144250 x + 15389375 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(8276699911115832752222429511299889027510277198729=13^{14}\cdot 71^{18}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $213.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 71$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(923=13\cdot 71\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{923}(640,·)$, $\chi_{923}(1,·)$, $\chi_{923}(900,·)$, $\chi_{923}(261,·)$, $\chi_{923}(321,·)$, $\chi_{923}(456,·)$, $\chi_{923}(458,·)$, $\chi_{923}(588,·)$, $\chi_{923}(529,·)$, $\chi_{923}(659,·)$, $\chi_{923}(534,·)$, $\chi_{923}(471,·)$, $\chi_{923}(542,·)$, $\chi_{923}(243,·)$, $\chi_{923}(742,·)$, $\chi_{923}(872,·)$, $\chi_{923}(711,·)$, $\chi_{923}(172,·)$, $\chi_{923}(48,·)$, $\chi_{923}(755,·)$, $\chi_{923}(250,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{5} a^{5} - \frac{1}{5} a$, $\frac{1}{5} a^{6} - \frac{1}{5} a^{2}$, $\frac{1}{5} a^{7} - \frac{1}{5} a^{3}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{4}$, $\frac{1}{5} a^{9} - \frac{1}{5} a$, $\frac{1}{25} a^{10} - \frac{2}{25} a^{6} + \frac{1}{25} a^{2}$, $\frac{1}{25} a^{11} - \frac{2}{25} a^{7} + \frac{1}{25} a^{3}$, $\frac{1}{25} a^{12} - \frac{2}{25} a^{8} + \frac{1}{25} a^{4}$, $\frac{1}{125} a^{13} + \frac{1}{125} a^{12} + \frac{1}{125} a^{11} + \frac{1}{125} a^{10} - \frac{7}{125} a^{9} + \frac{8}{125} a^{8} + \frac{8}{125} a^{7} + \frac{8}{125} a^{6} - \frac{4}{125} a^{5} - \frac{9}{125} a^{4} + \frac{41}{125} a^{3} + \frac{41}{125} a^{2} + \frac{12}{25} a + \frac{2}{5}$, $\frac{1}{125} a^{14} + \frac{2}{125} a^{10} - \frac{2}{25} a^{9} - \frac{7}{125} a^{6} - \frac{1}{25} a^{5} + \frac{2}{5} a^{4} + \frac{4}{125} a^{2} + \frac{3}{25} a - \frac{2}{5}$, $\frac{1}{625} a^{15} + \frac{2}{625} a^{14} + \frac{2}{625} a^{13} + \frac{7}{625} a^{12} - \frac{6}{625} a^{11} - \frac{4}{625} a^{10} - \frac{9}{625} a^{9} + \frac{6}{625} a^{8} - \frac{46}{625} a^{7} - \frac{28}{625} a^{6} - \frac{18}{625} a^{5} - \frac{288}{625} a^{4} + \frac{26}{625} a^{3} + \frac{51}{125} a^{2} - \frac{2}{5} a - \frac{2}{5}$, $\frac{1}{625} a^{16} - \frac{2}{625} a^{14} - \frac{2}{625} a^{13} + \frac{3}{625} a^{11} - \frac{6}{625} a^{10} + \frac{59}{625} a^{9} - \frac{23}{625} a^{8} + \frac{24}{625} a^{7} - \frac{2}{625} a^{6} + \frac{18}{625} a^{5} - \frac{78}{625} a^{4} - \frac{2}{625} a^{3} + \frac{57}{125} a^{2} - \frac{12}{25} a + \frac{2}{5}$, $\frac{1}{625} a^{17} + \frac{2}{625} a^{14} - \frac{1}{625} a^{13} + \frac{12}{625} a^{12} + \frac{2}{625} a^{11} - \frac{4}{625} a^{10} - \frac{6}{625} a^{9} - \frac{4}{625} a^{8} - \frac{59}{625} a^{7} + \frac{22}{625} a^{6} + \frac{31}{625} a^{5} + \frac{92}{625} a^{4} + \frac{32}{625} a^{3} - \frac{9}{125} a^{2} - \frac{2}{25} a - \frac{1}{5}$, $\frac{1}{53125} a^{18} + \frac{42}{53125} a^{17} - \frac{22}{53125} a^{16} - \frac{41}{53125} a^{15} + \frac{26}{53125} a^{14} - \frac{12}{53125} a^{13} + \frac{118}{10625} a^{12} + \frac{507}{53125} a^{11} - \frac{28}{10625} a^{10} - \frac{2937}{53125} a^{9} - \frac{4524}{53125} a^{8} - \frac{2626}{53125} a^{7} + \frac{1763}{53125} a^{6} - \frac{5268}{53125} a^{5} + \frac{23906}{53125} a^{4} - \frac{2453}{10625} a^{3} + \frac{857}{2125} a^{2} - \frac{5}{17} a - \frac{3}{17}$, $\frac{1}{53125} a^{19} - \frac{1}{53125} a^{17} + \frac{33}{53125} a^{16} - \frac{37}{53125} a^{15} + \frac{171}{53125} a^{14} - \frac{11}{53125} a^{13} - \frac{48}{53125} a^{12} - \frac{779}{53125} a^{11} - \frac{882}{53125} a^{10} - \frac{39}{625} a^{9} + \frac{3357}{53125} a^{8} + \frac{69}{2125} a^{7} + \frac{3136}{53125} a^{6} + \frac{1127}{53125} a^{5} - \frac{16292}{53125} a^{4} - \frac{1897}{10625} a^{3} - \frac{58}{425} a^{2} + \frac{194}{425} a + \frac{7}{17}$, $\frac{1}{330412896443946624798117975406036924484375} a^{20} + \frac{356174058800390146111748145148698563}{66082579288789324959623595081207384896875} a^{19} - \frac{1953056166933707220111847736592416219}{330412896443946624798117975406036924484375} a^{18} - \frac{78055566150209055680886447754361039618}{330412896443946624798117975406036924484375} a^{17} - \frac{15587875047513287949814349330150004771}{330412896443946624798117975406036924484375} a^{16} + \frac{157188460769464856988552541302165984734}{330412896443946624798117975406036924484375} a^{15} + \frac{737330300574081258527344375573662707386}{330412896443946624798117975406036924484375} a^{14} + \frac{249811459356172662951375371594064444518}{330412896443946624798117975406036924484375} a^{13} - \frac{6159646730324161723119832356626144605394}{330412896443946624798117975406036924484375} a^{12} - \frac{5609653800504094104013697275556743878533}{330412896443946624798117975406036924484375} a^{11} + \frac{12164376265408076253933960353321931526}{13216515857757864991924719016241476979375} a^{10} + \frac{7248503347818363923782897694593885302733}{330412896443946624798117975406036924484375} a^{9} + \frac{26204636670550595363603512399680609455062}{330412896443946624798117975406036924484375} a^{8} + \frac{2896605318755150480264193917389485345619}{330412896443946624798117975406036924484375} a^{7} + \frac{2310727924991414185335657467017276602608}{330412896443946624798117975406036924484375} a^{6} + \frac{29538405364575800940113068842953727799067}{330412896443946624798117975406036924484375} a^{5} - \frac{59786729299017910146860648620287314486198}{330412896443946624798117975406036924484375} a^{4} + \frac{587427300911806963299271207942174852563}{66082579288789324959623595081207384896875} a^{3} + \frac{4489207627395401185438382531649663928021}{13216515857757864991924719016241476979375} a^{2} - \frac{585366464493152343102520648059902239794}{2643303171551572998384943803248295395875} a + \frac{22290019719328619926602531116177042973}{528660634310314599676988760649659079175}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 30398950792448647000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.169.1, 7.7.128100283921.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | ${\href{/LocalNumberField/5.1.0.1}{1} }^{21}$ | $21$ | $21$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| 71 | Data not computed | ||||||