Normalized defining polynomial
\( x^{21} - 63 x^{19} + 1638 x^{17} - 22925 x^{15} - 528 x^{14} + 189189 x^{13} + 17598 x^{12} - 950355 x^{11} - 214326 x^{10} + 2897321 x^{9} + 1205064 x^{8} - 5090418 x^{7} - 3298680 x^{6} + 4361112 x^{5} + 4078368 x^{4} - 908327 x^{3} - 1614354 x^{2} - 218484 x + 85544 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(80851377332871149873039593691602344912617472=2^{18}\cdot 3^{28}\cdot 7^{21}\cdot 17^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $123.27$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{15} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{3}$, $\frac{1}{34} a^{18} + \frac{5}{34} a^{16} + \frac{3}{17} a^{14} + \frac{4}{17} a^{12} + \frac{8}{17} a^{11} - \frac{2}{17} a^{10} - \frac{7}{17} a^{9} - \frac{2}{17} a^{8} + \frac{5}{17} a^{7} - \frac{3}{17} a^{6} + \frac{1}{17} a^{5} + \frac{11}{34} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{680} a^{19} - \frac{1}{85} a^{18} + \frac{1}{136} a^{17} + \frac{7}{170} a^{16} + \frac{37}{340} a^{15} + \frac{1}{34} a^{14} - \frac{9}{680} a^{13} + \frac{28}{85} a^{12} + \frac{21}{680} a^{11} + \frac{43}{340} a^{10} + \frac{261}{680} a^{9} - \frac{23}{68} a^{8} + \frac{61}{136} a^{7} - \frac{32}{85} a^{6} - \frac{9}{68} a^{5} - \frac{28}{85} a^{4} + \frac{3}{10} a^{3} - \frac{1}{2} a^{2} - \frac{3}{40} a + \frac{1}{20}$, $\frac{1}{53936939098047499321113333813108800} a^{20} - \frac{16131159100232312735241318890357}{26968469549023749660556666906554400} a^{19} + \frac{692967435166142512750312354957733}{53936939098047499321113333813108800} a^{18} - \frac{1208400056174936682960067236189881}{26968469549023749660556666906554400} a^{17} - \frac{2624107080870757750362694812413747}{26968469549023749660556666906554400} a^{16} - \frac{753412507480479749060240732969121}{13484234774511874830278333453277200} a^{15} + \frac{725610364970188571695531379780251}{53936939098047499321113333813108800} a^{14} - \frac{1639330474916259104278845411979871}{26968469549023749660556666906554400} a^{13} + \frac{12538856667408671662936361579177777}{53936939098047499321113333813108800} a^{12} + \frac{1002211118988664539111709821030281}{2696846954902374966055666690655440} a^{11} + \frac{2848652832711335723351468585352673}{10787387819609499864222666762621760} a^{10} - \frac{308481178571206722591572843229417}{6742117387255937415139166726638600} a^{9} - \frac{470182610180858724346660249216351}{2157477563921899972844533352524352} a^{8} + \frac{2243478719008084415040998190258807}{26968469549023749660556666906554400} a^{7} - \frac{1361030985628437953781006422257407}{26968469549023749660556666906554400} a^{6} - \frac{3721137922637543359219647130572771}{13484234774511874830278333453277200} a^{5} - \frac{1117996382741242401780880875846307}{3371058693627968707569583363319300} a^{4} - \frac{21371257136673843984984486044731}{99148785106704961987340687156450} a^{3} + \frac{958869329416368417479640399792457}{3172761123414558783594901989006400} a^{2} + \frac{62144755677516133515242975317937}{158638056170727939179745099450320} a - \frac{146610057707495181497797165176303}{793190280853639695898725497251600}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5102009942530000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6174 |
| The 45 conjugacy class representatives for t21n43 |
| Character table for t21n43 is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/19.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | $21$ | $21$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }$ | $21$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{3}$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| $3$ | 3.3.4.2 | $x^{3} - 3 x^{2} + 3$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 17.6.0.1 | $x^{6} - x + 12$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 17.7.6.1 | $x^{7} - 17$ | $7$ | $1$ | $6$ | $F_7$ | $[\ ]_{7}^{6}$ | |