Properties

Label 21.21.808...649.2
Degree $21$
Signature $[21, 0]$
Discriminant $8.081\times 10^{53}$
Root discriminant \(369.00\)
Ramified primes $7,127$
Class number $3$ (GRH)
Class group [3] (GRH)
Galois group $C_{21}$ (as 21T1)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^21 - x^20 - 314*x^19 + 641*x^18 + 36738*x^17 - 95806*x^16 - 2134622*x^15 + 6573588*x^14 + 67487244*x^13 - 249054401*x^12 - 1162017486*x^11 + 5450875699*x^10 + 9285707168*x^9 - 67555921271*x^8 + 824221871*x^7 + 429237041242*x^6 - 490449416375*x^5 - 989353991611*x^4 + 2305780509364*x^3 - 753973198685*x^2 - 1273935520834*x + 833882527031)
 
gp: K = bnfinit(y^21 - y^20 - 314*y^19 + 641*y^18 + 36738*y^17 - 95806*y^16 - 2134622*y^15 + 6573588*y^14 + 67487244*y^13 - 249054401*y^12 - 1162017486*y^11 + 5450875699*y^10 + 9285707168*y^9 - 67555921271*y^8 + 824221871*y^7 + 429237041242*y^6 - 490449416375*y^5 - 989353991611*y^4 + 2305780509364*y^3 - 753973198685*y^2 - 1273935520834*y + 833882527031, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^21 - x^20 - 314*x^19 + 641*x^18 + 36738*x^17 - 95806*x^16 - 2134622*x^15 + 6573588*x^14 + 67487244*x^13 - 249054401*x^12 - 1162017486*x^11 + 5450875699*x^10 + 9285707168*x^9 - 67555921271*x^8 + 824221871*x^7 + 429237041242*x^6 - 490449416375*x^5 - 989353991611*x^4 + 2305780509364*x^3 - 753973198685*x^2 - 1273935520834*x + 833882527031);
 
oscar: Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - x^20 - 314*x^19 + 641*x^18 + 36738*x^17 - 95806*x^16 - 2134622*x^15 + 6573588*x^14 + 67487244*x^13 - 249054401*x^12 - 1162017486*x^11 + 5450875699*x^10 + 9285707168*x^9 - 67555921271*x^8 + 824221871*x^7 + 429237041242*x^6 - 490449416375*x^5 - 989353991611*x^4 + 2305780509364*x^3 - 753973198685*x^2 - 1273935520834*x + 833882527031)
 

\( x^{21} - x^{20} - 314 x^{19} + 641 x^{18} + 36738 x^{17} - 95806 x^{16} - 2134622 x^{15} + \cdots + 833882527031 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $21$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[21, 0]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(808066270618405716993861719647864148675120272481133649\) \(\medspace = 7^{14}\cdot 127^{20}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(369.00\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $7^{2/3}127^{20/21}\approx 368.99568256878683$
Ramified primes:   \(7\), \(127\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Gal(K/\Q) }$:  $21$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is Galois and abelian over $\Q$.
Conductor:  \(889=7\cdot 127\)
Dirichlet character group:    $\lbrace$$\chi_{889}(512,·)$, $\chi_{889}(1,·)$, $\chi_{889}(555,·)$, $\chi_{889}(711,·)$, $\chi_{889}(8,·)$, $\chi_{889}(778,·)$, $\chi_{889}(781,·)$, $\chi_{889}(849,·)$, $\chi_{889}(856,·)$, $\chi_{889}(25,·)$, $\chi_{889}(540,·)$, $\chi_{889}(354,·)$, $\chi_{889}(165,·)$, $\chi_{889}(625,·)$, $\chi_{889}(64,·)$, $\chi_{889}(107,·)$, $\chi_{889}(431,·)$, $\chi_{889}(200,·)$, $\chi_{889}(884,·)$, $\chi_{889}(569,·)$, $\chi_{889}(764,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{103}a^{18}-\frac{14}{103}a^{17}-\frac{4}{103}a^{16}+\frac{33}{103}a^{15}-\frac{33}{103}a^{14}+\frac{6}{103}a^{13}+\frac{44}{103}a^{12}+\frac{48}{103}a^{11}-\frac{49}{103}a^{10}-\frac{50}{103}a^{9}-\frac{22}{103}a^{8}+\frac{42}{103}a^{7}-\frac{39}{103}a^{6}-\frac{47}{103}a^{5}+\frac{15}{103}a^{4}+\frac{5}{103}a^{3}+\frac{30}{103}a^{2}-\frac{5}{103}a+\frac{39}{103}$, $\frac{1}{6077}a^{19}+\frac{25}{6077}a^{18}-\frac{1889}{6077}a^{17}+\frac{804}{6077}a^{16}+\frac{2696}{6077}a^{15}+\frac{2118}{6077}a^{14}+\frac{2132}{6077}a^{13}-\frac{1738}{6077}a^{12}-\frac{11}{103}a^{11}-\frac{107}{6077}a^{10}+\frac{603}{6077}a^{9}+\frac{626}{6077}a^{8}+\frac{1290}{6077}a^{7}+\frac{595}{6077}a^{6}-\frac{170}{6077}a^{5}-\frac{2397}{6077}a^{4}+\frac{1667}{6077}a^{3}+\frac{1577}{6077}a^{2}-\frac{2731}{6077}a+\frac{1624}{6077}$, $\frac{1}{90\!\cdots\!19}a^{20}-\frac{38\!\cdots\!79}{90\!\cdots\!19}a^{19}+\frac{41\!\cdots\!16}{90\!\cdots\!19}a^{18}-\frac{59\!\cdots\!21}{90\!\cdots\!19}a^{17}-\frac{20\!\cdots\!20}{90\!\cdots\!19}a^{16}+\frac{47\!\cdots\!38}{90\!\cdots\!19}a^{15}+\frac{57\!\cdots\!83}{15\!\cdots\!41}a^{14}+\frac{31\!\cdots\!53}{90\!\cdots\!19}a^{13}+\frac{34\!\cdots\!29}{90\!\cdots\!19}a^{12}+\frac{20\!\cdots\!17}{90\!\cdots\!19}a^{11}-\frac{22\!\cdots\!09}{90\!\cdots\!19}a^{10}-\frac{12\!\cdots\!06}{90\!\cdots\!19}a^{9}-\frac{20\!\cdots\!76}{90\!\cdots\!19}a^{8}+\frac{80\!\cdots\!16}{90\!\cdots\!19}a^{7}-\frac{44\!\cdots\!14}{90\!\cdots\!19}a^{6}-\frac{26\!\cdots\!95}{90\!\cdots\!19}a^{5}+\frac{15\!\cdots\!64}{90\!\cdots\!19}a^{4}+\frac{99\!\cdots\!11}{90\!\cdots\!19}a^{3}-\frac{12\!\cdots\!85}{90\!\cdots\!19}a^{2}-\frac{11\!\cdots\!46}{90\!\cdots\!19}a+\frac{24\!\cdots\!03}{90\!\cdots\!19}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $20$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{83\!\cdots\!70}{77\!\cdots\!33}a^{20}+\frac{15\!\cdots\!89}{77\!\cdots\!33}a^{19}-\frac{25\!\cdots\!17}{77\!\cdots\!33}a^{18}-\frac{20\!\cdots\!68}{77\!\cdots\!33}a^{17}+\frac{30\!\cdots\!00}{77\!\cdots\!33}a^{16}+\frac{61\!\cdots\!81}{77\!\cdots\!33}a^{15}-\frac{17\!\cdots\!31}{77\!\cdots\!33}a^{14}+\frac{44\!\cdots\!87}{77\!\cdots\!33}a^{13}+\frac{57\!\cdots\!96}{77\!\cdots\!33}a^{12}-\frac{43\!\cdots\!35}{77\!\cdots\!33}a^{11}-\frac{10\!\cdots\!11}{77\!\cdots\!33}a^{10}+\frac{14\!\cdots\!83}{77\!\cdots\!33}a^{9}+\frac{11\!\cdots\!73}{77\!\cdots\!33}a^{8}-\frac{22\!\cdots\!28}{77\!\cdots\!33}a^{7}-\frac{64\!\cdots\!74}{77\!\cdots\!33}a^{6}+\frac{17\!\cdots\!57}{77\!\cdots\!33}a^{5}+\frac{92\!\cdots\!28}{77\!\cdots\!33}a^{4}-\frac{56\!\cdots\!76}{77\!\cdots\!33}a^{3}+\frac{32\!\cdots\!08}{77\!\cdots\!33}a^{2}+\frac{28\!\cdots\!92}{77\!\cdots\!33}a-\frac{24\!\cdots\!70}{77\!\cdots\!33}$, $\frac{88\!\cdots\!98}{77\!\cdots\!33}a^{20}+\frac{16\!\cdots\!46}{77\!\cdots\!33}a^{19}-\frac{27\!\cdots\!07}{77\!\cdots\!33}a^{18}-\frac{21\!\cdots\!20}{77\!\cdots\!33}a^{17}+\frac{31\!\cdots\!39}{77\!\cdots\!33}a^{16}+\frac{71\!\cdots\!24}{77\!\cdots\!33}a^{15}-\frac{18\!\cdots\!83}{77\!\cdots\!33}a^{14}+\frac{42\!\cdots\!40}{77\!\cdots\!33}a^{13}+\frac{60\!\cdots\!55}{77\!\cdots\!33}a^{12}-\frac{44\!\cdots\!53}{77\!\cdots\!33}a^{11}-\frac{11\!\cdots\!12}{77\!\cdots\!33}a^{10}+\frac{14\!\cdots\!48}{77\!\cdots\!33}a^{9}+\frac{12\!\cdots\!15}{77\!\cdots\!33}a^{8}-\frac{23\!\cdots\!85}{77\!\cdots\!33}a^{7}-\frac{67\!\cdots\!72}{77\!\cdots\!33}a^{6}+\frac{18\!\cdots\!71}{77\!\cdots\!33}a^{5}+\frac{98\!\cdots\!50}{77\!\cdots\!33}a^{4}-\frac{58\!\cdots\!72}{77\!\cdots\!33}a^{3}+\frac{33\!\cdots\!49}{77\!\cdots\!33}a^{2}+\frac{30\!\cdots\!70}{77\!\cdots\!33}a-\frac{25\!\cdots\!68}{77\!\cdots\!33}$, $\frac{88\!\cdots\!08}{77\!\cdots\!33}a^{20}+\frac{15\!\cdots\!55}{77\!\cdots\!33}a^{19}-\frac{27\!\cdots\!92}{77\!\cdots\!33}a^{18}-\frac{20\!\cdots\!32}{77\!\cdots\!33}a^{17}+\frac{31\!\cdots\!23}{77\!\cdots\!33}a^{16}+\frac{50\!\cdots\!94}{77\!\cdots\!33}a^{15}-\frac{18\!\cdots\!37}{77\!\cdots\!33}a^{14}+\frac{53\!\cdots\!07}{77\!\cdots\!33}a^{13}+\frac{60\!\cdots\!23}{77\!\cdots\!33}a^{12}-\frac{47\!\cdots\!66}{77\!\cdots\!33}a^{11}-\frac{11\!\cdots\!95}{77\!\cdots\!33}a^{10}+\frac{15\!\cdots\!94}{77\!\cdots\!33}a^{9}+\frac{12\!\cdots\!46}{77\!\cdots\!33}a^{8}-\frac{24\!\cdots\!51}{77\!\cdots\!33}a^{7}-\frac{67\!\cdots\!33}{77\!\cdots\!33}a^{6}+\frac{18\!\cdots\!64}{77\!\cdots\!33}a^{5}+\frac{96\!\cdots\!05}{77\!\cdots\!33}a^{4}-\frac{59\!\cdots\!63}{77\!\cdots\!33}a^{3}+\frac{34\!\cdots\!04}{77\!\cdots\!33}a^{2}+\frac{30\!\cdots\!40}{77\!\cdots\!33}a-\frac{26\!\cdots\!66}{77\!\cdots\!33}$, $\frac{25\!\cdots\!79}{77\!\cdots\!33}a^{20}+\frac{34\!\cdots\!89}{77\!\cdots\!33}a^{19}-\frac{80\!\cdots\!33}{77\!\cdots\!33}a^{18}-\frac{23\!\cdots\!67}{77\!\cdots\!33}a^{17}+\frac{94\!\cdots\!46}{77\!\cdots\!33}a^{16}-\frac{24\!\cdots\!34}{77\!\cdots\!33}a^{15}-\frac{55\!\cdots\!34}{77\!\cdots\!33}a^{14}+\frac{37\!\cdots\!27}{77\!\cdots\!33}a^{13}+\frac{18\!\cdots\!28}{77\!\cdots\!33}a^{12}-\frac{20\!\cdots\!18}{77\!\cdots\!33}a^{11}-\frac{35\!\cdots\!08}{77\!\cdots\!33}a^{10}+\frac{56\!\cdots\!35}{77\!\cdots\!33}a^{9}+\frac{38\!\cdots\!12}{77\!\cdots\!33}a^{8}-\frac{83\!\cdots\!55}{77\!\cdots\!33}a^{7}-\frac{20\!\cdots\!83}{77\!\cdots\!33}a^{6}+\frac{62\!\cdots\!34}{77\!\cdots\!33}a^{5}+\frac{25\!\cdots\!51}{77\!\cdots\!33}a^{4}-\frac{19\!\cdots\!67}{77\!\cdots\!33}a^{3}+\frac{11\!\cdots\!07}{77\!\cdots\!33}a^{2}+\frac{99\!\cdots\!01}{77\!\cdots\!33}a-\frac{88\!\cdots\!15}{77\!\cdots\!33}$, $\frac{19\!\cdots\!52}{77\!\cdots\!33}a^{20}+\frac{35\!\cdots\!30}{77\!\cdots\!33}a^{19}-\frac{58\!\cdots\!60}{77\!\cdots\!33}a^{18}-\frac{45\!\cdots\!30}{77\!\cdots\!33}a^{17}+\frac{68\!\cdots\!21}{77\!\cdots\!33}a^{16}+\frac{13\!\cdots\!47}{77\!\cdots\!33}a^{15}-\frac{40\!\cdots\!40}{77\!\cdots\!33}a^{14}+\frac{10\!\cdots\!73}{77\!\cdots\!33}a^{13}+\frac{13\!\cdots\!43}{77\!\cdots\!33}a^{12}-\frac{99\!\cdots\!56}{77\!\cdots\!33}a^{11}-\frac{25\!\cdots\!02}{77\!\cdots\!33}a^{10}+\frac{32\!\cdots\!11}{77\!\cdots\!33}a^{9}+\frac{27\!\cdots\!41}{77\!\cdots\!33}a^{8}-\frac{51\!\cdots\!80}{77\!\cdots\!33}a^{7}-\frac{14\!\cdots\!03}{77\!\cdots\!33}a^{6}+\frac{40\!\cdots\!97}{77\!\cdots\!33}a^{5}+\frac{21\!\cdots\!72}{77\!\cdots\!33}a^{4}-\frac{12\!\cdots\!07}{77\!\cdots\!33}a^{3}+\frac{73\!\cdots\!93}{77\!\cdots\!33}a^{2}+\frac{65\!\cdots\!82}{77\!\cdots\!33}a-\frac{55\!\cdots\!38}{77\!\cdots\!33}$, $\frac{38\!\cdots\!12}{77\!\cdots\!33}a^{20}+\frac{71\!\cdots\!68}{77\!\cdots\!33}a^{19}-\frac{11\!\cdots\!51}{77\!\cdots\!33}a^{18}-\frac{92\!\cdots\!36}{77\!\cdots\!33}a^{17}+\frac{14\!\cdots\!70}{77\!\cdots\!33}a^{16}+\frac{26\!\cdots\!86}{77\!\cdots\!33}a^{15}-\frac{82\!\cdots\!18}{77\!\cdots\!33}a^{14}+\frac{21\!\cdots\!55}{77\!\cdots\!33}a^{13}+\frac{26\!\cdots\!68}{77\!\cdots\!33}a^{12}-\frac{20\!\cdots\!13}{77\!\cdots\!33}a^{11}-\frac{50\!\cdots\!28}{77\!\cdots\!33}a^{10}+\frac{66\!\cdots\!18}{77\!\cdots\!33}a^{9}+\frac{55\!\cdots\!26}{77\!\cdots\!33}a^{8}-\frac{10\!\cdots\!93}{77\!\cdots\!33}a^{7}-\frac{29\!\cdots\!08}{77\!\cdots\!33}a^{6}+\frac{82\!\cdots\!36}{77\!\cdots\!33}a^{5}+\frac{42\!\cdots\!09}{77\!\cdots\!33}a^{4}-\frac{26\!\cdots\!48}{77\!\cdots\!33}a^{3}+\frac{15\!\cdots\!43}{77\!\cdots\!33}a^{2}+\frac{13\!\cdots\!16}{77\!\cdots\!33}a-\frac{11\!\cdots\!58}{77\!\cdots\!33}$, $\frac{49\!\cdots\!67}{90\!\cdots\!19}a^{20}+\frac{97\!\cdots\!72}{90\!\cdots\!19}a^{19}-\frac{15\!\cdots\!76}{90\!\cdots\!19}a^{18}-\frac{13\!\cdots\!80}{90\!\cdots\!19}a^{17}+\frac{17\!\cdots\!31}{90\!\cdots\!19}a^{16}+\frac{53\!\cdots\!40}{90\!\cdots\!19}a^{15}-\frac{10\!\cdots\!14}{90\!\cdots\!19}a^{14}+\frac{16\!\cdots\!25}{90\!\cdots\!19}a^{13}+\frac{34\!\cdots\!76}{90\!\cdots\!19}a^{12}-\frac{22\!\cdots\!00}{90\!\cdots\!19}a^{11}-\frac{64\!\cdots\!84}{90\!\cdots\!19}a^{10}+\frac{79\!\cdots\!53}{90\!\cdots\!19}a^{9}+\frac{69\!\cdots\!21}{90\!\cdots\!19}a^{8}-\frac{12\!\cdots\!73}{90\!\cdots\!19}a^{7}-\frac{37\!\cdots\!94}{90\!\cdots\!19}a^{6}+\frac{98\!\cdots\!59}{88\!\cdots\!73}a^{5}+\frac{56\!\cdots\!46}{90\!\cdots\!19}a^{4}-\frac{32\!\cdots\!13}{90\!\cdots\!19}a^{3}+\frac{18\!\cdots\!15}{90\!\cdots\!19}a^{2}+\frac{16\!\cdots\!34}{90\!\cdots\!19}a-\frac{14\!\cdots\!19}{90\!\cdots\!19}$, $\frac{84\!\cdots\!03}{90\!\cdots\!19}a^{20}+\frac{16\!\cdots\!70}{90\!\cdots\!19}a^{19}-\frac{25\!\cdots\!33}{90\!\cdots\!19}a^{18}-\frac{21\!\cdots\!13}{90\!\cdots\!19}a^{17}+\frac{30\!\cdots\!93}{90\!\cdots\!19}a^{16}+\frac{75\!\cdots\!57}{90\!\cdots\!19}a^{15}-\frac{17\!\cdots\!05}{90\!\cdots\!19}a^{14}+\frac{36\!\cdots\!98}{90\!\cdots\!19}a^{13}+\frac{57\!\cdots\!12}{90\!\cdots\!19}a^{12}-\frac{41\!\cdots\!15}{90\!\cdots\!19}a^{11}-\frac{10\!\cdots\!75}{90\!\cdots\!19}a^{10}+\frac{13\!\cdots\!62}{90\!\cdots\!19}a^{9}+\frac{11\!\cdots\!82}{90\!\cdots\!19}a^{8}-\frac{22\!\cdots\!85}{90\!\cdots\!19}a^{7}-\frac{64\!\cdots\!69}{90\!\cdots\!19}a^{6}+\frac{17\!\cdots\!86}{90\!\cdots\!19}a^{5}+\frac{94\!\cdots\!38}{90\!\cdots\!19}a^{4}-\frac{55\!\cdots\!46}{90\!\cdots\!19}a^{3}+\frac{31\!\cdots\!74}{90\!\cdots\!19}a^{2}+\frac{28\!\cdots\!36}{90\!\cdots\!19}a-\frac{24\!\cdots\!40}{90\!\cdots\!19}$, $\frac{10\!\cdots\!73}{90\!\cdots\!19}a^{20}+\frac{19\!\cdots\!20}{90\!\cdots\!19}a^{19}-\frac{31\!\cdots\!45}{90\!\cdots\!19}a^{18}-\frac{24\!\cdots\!94}{90\!\cdots\!19}a^{17}+\frac{37\!\cdots\!13}{90\!\cdots\!19}a^{16}+\frac{71\!\cdots\!28}{90\!\cdots\!19}a^{15}-\frac{21\!\cdots\!81}{90\!\cdots\!19}a^{14}+\frac{57\!\cdots\!89}{90\!\cdots\!19}a^{13}+\frac{71\!\cdots\!39}{90\!\cdots\!19}a^{12}-\frac{54\!\cdots\!19}{90\!\cdots\!19}a^{11}-\frac{13\!\cdots\!60}{90\!\cdots\!19}a^{10}+\frac{17\!\cdots\!00}{90\!\cdots\!19}a^{9}+\frac{14\!\cdots\!46}{90\!\cdots\!19}a^{8}-\frac{28\!\cdots\!67}{90\!\cdots\!19}a^{7}-\frac{79\!\cdots\!00}{90\!\cdots\!19}a^{6}+\frac{21\!\cdots\!31}{90\!\cdots\!19}a^{5}+\frac{11\!\cdots\!37}{90\!\cdots\!19}a^{4}-\frac{69\!\cdots\!73}{90\!\cdots\!19}a^{3}+\frac{40\!\cdots\!71}{90\!\cdots\!19}a^{2}+\frac{35\!\cdots\!27}{90\!\cdots\!19}a-\frac{30\!\cdots\!84}{90\!\cdots\!19}$, $\frac{14\!\cdots\!09}{90\!\cdots\!19}a^{20}+\frac{23\!\cdots\!04}{90\!\cdots\!19}a^{19}-\frac{43\!\cdots\!05}{90\!\cdots\!19}a^{18}-\frac{26\!\cdots\!26}{90\!\cdots\!19}a^{17}+\frac{50\!\cdots\!53}{90\!\cdots\!19}a^{16}+\frac{23\!\cdots\!94}{90\!\cdots\!19}a^{15}-\frac{29\!\cdots\!42}{90\!\cdots\!19}a^{14}+\frac{11\!\cdots\!93}{90\!\cdots\!19}a^{13}+\frac{98\!\cdots\!45}{90\!\cdots\!19}a^{12}-\frac{86\!\cdots\!57}{90\!\cdots\!19}a^{11}-\frac{18\!\cdots\!56}{90\!\cdots\!19}a^{10}+\frac{26\!\cdots\!65}{90\!\cdots\!19}a^{9}+\frac{20\!\cdots\!62}{90\!\cdots\!19}a^{8}-\frac{40\!\cdots\!79}{90\!\cdots\!19}a^{7}-\frac{10\!\cdots\!29}{90\!\cdots\!19}a^{6}+\frac{31\!\cdots\!23}{90\!\cdots\!19}a^{5}+\frac{14\!\cdots\!39}{90\!\cdots\!19}a^{4}-\frac{99\!\cdots\!28}{90\!\cdots\!19}a^{3}+\frac{58\!\cdots\!50}{90\!\cdots\!19}a^{2}+\frac{50\!\cdots\!39}{90\!\cdots\!19}a-\frac{43\!\cdots\!74}{90\!\cdots\!19}$, $\frac{63\!\cdots\!39}{90\!\cdots\!19}a^{20}+\frac{11\!\cdots\!70}{90\!\cdots\!19}a^{19}-\frac{19\!\cdots\!70}{90\!\cdots\!19}a^{18}-\frac{15\!\cdots\!55}{90\!\cdots\!19}a^{17}+\frac{22\!\cdots\!42}{90\!\cdots\!19}a^{16}+\frac{47\!\cdots\!49}{90\!\cdots\!19}a^{15}-\frac{13\!\cdots\!80}{90\!\cdots\!19}a^{14}+\frac{32\!\cdots\!03}{90\!\cdots\!19}a^{13}+\frac{43\!\cdots\!35}{90\!\cdots\!19}a^{12}-\frac{32\!\cdots\!12}{90\!\cdots\!19}a^{11}-\frac{82\!\cdots\!95}{90\!\cdots\!19}a^{10}+\frac{10\!\cdots\!55}{90\!\cdots\!19}a^{9}+\frac{89\!\cdots\!23}{90\!\cdots\!19}a^{8}-\frac{17\!\cdots\!41}{90\!\cdots\!19}a^{7}-\frac{48\!\cdots\!94}{90\!\cdots\!19}a^{6}+\frac{13\!\cdots\!62}{90\!\cdots\!19}a^{5}+\frac{70\!\cdots\!73}{90\!\cdots\!19}a^{4}-\frac{42\!\cdots\!07}{90\!\cdots\!19}a^{3}+\frac{24\!\cdots\!59}{90\!\cdots\!19}a^{2}+\frac{21\!\cdots\!06}{90\!\cdots\!19}a-\frac{18\!\cdots\!73}{90\!\cdots\!19}$, $\frac{23\!\cdots\!25}{90\!\cdots\!19}a^{20}+\frac{43\!\cdots\!05}{90\!\cdots\!19}a^{19}-\frac{71\!\cdots\!00}{90\!\cdots\!19}a^{18}-\frac{57\!\cdots\!41}{90\!\cdots\!19}a^{17}+\frac{83\!\cdots\!42}{90\!\cdots\!19}a^{16}+\frac{18\!\cdots\!38}{90\!\cdots\!19}a^{15}-\frac{48\!\cdots\!76}{90\!\cdots\!19}a^{14}+\frac{11\!\cdots\!00}{90\!\cdots\!19}a^{13}+\frac{15\!\cdots\!04}{90\!\cdots\!19}a^{12}-\frac{11\!\cdots\!22}{90\!\cdots\!19}a^{11}-\frac{30\!\cdots\!14}{90\!\cdots\!19}a^{10}+\frac{38\!\cdots\!34}{90\!\cdots\!19}a^{9}+\frac{32\!\cdots\!88}{90\!\cdots\!19}a^{8}-\frac{61\!\cdots\!85}{90\!\cdots\!19}a^{7}-\frac{17\!\cdots\!11}{90\!\cdots\!19}a^{6}+\frac{48\!\cdots\!08}{90\!\cdots\!19}a^{5}+\frac{25\!\cdots\!64}{90\!\cdots\!19}a^{4}-\frac{15\!\cdots\!94}{90\!\cdots\!19}a^{3}+\frac{87\!\cdots\!24}{90\!\cdots\!19}a^{2}+\frac{78\!\cdots\!49}{90\!\cdots\!19}a-\frac{66\!\cdots\!68}{90\!\cdots\!19}$, $\frac{32\!\cdots\!51}{90\!\cdots\!19}a^{20}+\frac{56\!\cdots\!12}{90\!\cdots\!19}a^{19}-\frac{10\!\cdots\!06}{90\!\cdots\!19}a^{18}-\frac{67\!\cdots\!75}{90\!\cdots\!19}a^{17}+\frac{11\!\cdots\!71}{90\!\cdots\!19}a^{16}+\frac{10\!\cdots\!07}{90\!\cdots\!19}a^{15}-\frac{69\!\cdots\!06}{90\!\cdots\!19}a^{14}+\frac{24\!\cdots\!20}{90\!\cdots\!19}a^{13}+\frac{22\!\cdots\!09}{90\!\cdots\!19}a^{12}-\frac{19\!\cdots\!28}{90\!\cdots\!19}a^{11}-\frac{43\!\cdots\!01}{90\!\cdots\!19}a^{10}+\frac{59\!\cdots\!32}{90\!\cdots\!19}a^{9}+\frac{46\!\cdots\!06}{90\!\cdots\!19}a^{8}-\frac{92\!\cdots\!99}{90\!\cdots\!19}a^{7}-\frac{25\!\cdots\!58}{90\!\cdots\!19}a^{6}+\frac{71\!\cdots\!55}{90\!\cdots\!19}a^{5}+\frac{35\!\cdots\!95}{90\!\cdots\!19}a^{4}-\frac{22\!\cdots\!12}{90\!\cdots\!19}a^{3}+\frac{13\!\cdots\!62}{90\!\cdots\!19}a^{2}+\frac{11\!\cdots\!82}{90\!\cdots\!19}a-\frac{99\!\cdots\!27}{90\!\cdots\!19}$, $\frac{45\!\cdots\!06}{15\!\cdots\!41}a^{20}+\frac{45\!\cdots\!02}{90\!\cdots\!19}a^{19}-\frac{83\!\cdots\!60}{90\!\cdots\!19}a^{18}-\frac{50\!\cdots\!38}{90\!\cdots\!19}a^{17}+\frac{97\!\cdots\!19}{90\!\cdots\!19}a^{16}+\frac{27\!\cdots\!29}{90\!\cdots\!19}a^{15}-\frac{57\!\cdots\!75}{90\!\cdots\!19}a^{14}+\frac{23\!\cdots\!11}{90\!\cdots\!19}a^{13}+\frac{18\!\cdots\!99}{90\!\cdots\!19}a^{12}-\frac{28\!\cdots\!65}{15\!\cdots\!41}a^{11}-\frac{35\!\cdots\!96}{90\!\cdots\!19}a^{10}+\frac{51\!\cdots\!38}{90\!\cdots\!19}a^{9}+\frac{38\!\cdots\!74}{90\!\cdots\!19}a^{8}-\frac{78\!\cdots\!10}{90\!\cdots\!19}a^{7}-\frac{20\!\cdots\!27}{90\!\cdots\!19}a^{6}+\frac{60\!\cdots\!94}{90\!\cdots\!19}a^{5}+\frac{28\!\cdots\!07}{90\!\cdots\!19}a^{4}-\frac{19\!\cdots\!52}{90\!\cdots\!19}a^{3}+\frac{11\!\cdots\!85}{90\!\cdots\!19}a^{2}+\frac{97\!\cdots\!95}{90\!\cdots\!19}a-\frac{84\!\cdots\!59}{90\!\cdots\!19}$, $\frac{25\!\cdots\!40}{90\!\cdots\!19}a^{20}+\frac{28\!\cdots\!10}{90\!\cdots\!19}a^{19}-\frac{79\!\cdots\!49}{90\!\cdots\!19}a^{18}-\frac{38\!\cdots\!81}{90\!\cdots\!19}a^{17}+\frac{93\!\cdots\!40}{90\!\cdots\!19}a^{16}-\frac{47\!\cdots\!89}{90\!\cdots\!19}a^{15}-\frac{55\!\cdots\!45}{90\!\cdots\!19}a^{14}+\frac{50\!\cdots\!60}{90\!\cdots\!19}a^{13}+\frac{18\!\cdots\!00}{90\!\cdots\!19}a^{12}-\frac{24\!\cdots\!03}{90\!\cdots\!19}a^{11}-\frac{35\!\cdots\!88}{90\!\cdots\!19}a^{10}+\frac{65\!\cdots\!56}{90\!\cdots\!19}a^{9}+\frac{37\!\cdots\!18}{90\!\cdots\!19}a^{8}-\frac{93\!\cdots\!74}{90\!\cdots\!19}a^{7}-\frac{19\!\cdots\!60}{90\!\cdots\!19}a^{6}+\frac{68\!\cdots\!95}{90\!\cdots\!19}a^{5}+\frac{22\!\cdots\!34}{90\!\cdots\!19}a^{4}-\frac{21\!\cdots\!06}{90\!\cdots\!19}a^{3}+\frac{13\!\cdots\!72}{90\!\cdots\!19}a^{2}+\frac{10\!\cdots\!85}{90\!\cdots\!19}a-\frac{94\!\cdots\!15}{90\!\cdots\!19}$, $\frac{24\!\cdots\!38}{90\!\cdots\!19}a^{20}+\frac{45\!\cdots\!94}{90\!\cdots\!19}a^{19}-\frac{12\!\cdots\!01}{15\!\cdots\!41}a^{18}-\frac{58\!\cdots\!90}{90\!\cdots\!19}a^{17}+\frac{15\!\cdots\!52}{15\!\cdots\!41}a^{16}+\frac{17\!\cdots\!66}{90\!\cdots\!19}a^{15}-\frac{52\!\cdots\!51}{90\!\cdots\!19}a^{14}+\frac{13\!\cdots\!91}{90\!\cdots\!19}a^{13}+\frac{17\!\cdots\!66}{90\!\cdots\!19}a^{12}-\frac{12\!\cdots\!46}{90\!\cdots\!19}a^{11}-\frac{32\!\cdots\!57}{90\!\cdots\!19}a^{10}+\frac{42\!\cdots\!72}{90\!\cdots\!19}a^{9}+\frac{35\!\cdots\!31}{90\!\cdots\!19}a^{8}-\frac{67\!\cdots\!46}{90\!\cdots\!19}a^{7}-\frac{18\!\cdots\!07}{90\!\cdots\!19}a^{6}+\frac{52\!\cdots\!03}{90\!\cdots\!19}a^{5}+\frac{27\!\cdots\!53}{90\!\cdots\!19}a^{4}-\frac{16\!\cdots\!41}{90\!\cdots\!19}a^{3}+\frac{95\!\cdots\!26}{90\!\cdots\!19}a^{2}+\frac{85\!\cdots\!24}{90\!\cdots\!19}a-\frac{72\!\cdots\!88}{90\!\cdots\!19}$, $\frac{29\!\cdots\!36}{90\!\cdots\!19}a^{20}+\frac{55\!\cdots\!49}{90\!\cdots\!19}a^{19}-\frac{92\!\cdots\!12}{90\!\cdots\!19}a^{18}-\frac{71\!\cdots\!32}{90\!\cdots\!19}a^{17}+\frac{10\!\cdots\!59}{90\!\cdots\!19}a^{16}+\frac{21\!\cdots\!28}{90\!\cdots\!19}a^{15}-\frac{63\!\cdots\!94}{90\!\cdots\!19}a^{14}+\frac{16\!\cdots\!87}{90\!\cdots\!19}a^{13}+\frac{35\!\cdots\!10}{15\!\cdots\!41}a^{12}-\frac{15\!\cdots\!40}{90\!\cdots\!19}a^{11}-\frac{39\!\cdots\!13}{90\!\cdots\!19}a^{10}+\frac{51\!\cdots\!82}{90\!\cdots\!19}a^{9}+\frac{42\!\cdots\!41}{90\!\cdots\!19}a^{8}-\frac{81\!\cdots\!84}{90\!\cdots\!19}a^{7}-\frac{22\!\cdots\!17}{90\!\cdots\!19}a^{6}+\frac{63\!\cdots\!28}{90\!\cdots\!19}a^{5}+\frac{33\!\cdots\!70}{90\!\cdots\!19}a^{4}-\frac{20\!\cdots\!91}{90\!\cdots\!19}a^{3}+\frac{11\!\cdots\!51}{90\!\cdots\!19}a^{2}+\frac{10\!\cdots\!25}{90\!\cdots\!19}a-\frac{14\!\cdots\!79}{15\!\cdots\!41}$, $\frac{11\!\cdots\!70}{90\!\cdots\!19}a^{20}+\frac{26\!\cdots\!12}{90\!\cdots\!19}a^{19}-\frac{35\!\cdots\!86}{90\!\cdots\!19}a^{18}-\frac{42\!\cdots\!49}{90\!\cdots\!19}a^{17}+\frac{41\!\cdots\!38}{90\!\cdots\!19}a^{16}+\frac{24\!\cdots\!37}{90\!\cdots\!19}a^{15}-\frac{24\!\cdots\!89}{90\!\cdots\!19}a^{14}-\frac{24\!\cdots\!05}{90\!\cdots\!19}a^{13}+\frac{78\!\cdots\!43}{90\!\cdots\!19}a^{12}-\frac{34\!\cdots\!75}{90\!\cdots\!19}a^{11}-\frac{14\!\cdots\!20}{90\!\cdots\!19}a^{10}+\frac{15\!\cdots\!89}{90\!\cdots\!19}a^{9}+\frac{15\!\cdots\!91}{90\!\cdots\!19}a^{8}-\frac{45\!\cdots\!38}{15\!\cdots\!41}a^{7}-\frac{86\!\cdots\!25}{90\!\cdots\!19}a^{6}+\frac{21\!\cdots\!77}{90\!\cdots\!19}a^{5}+\frac{13\!\cdots\!33}{90\!\cdots\!19}a^{4}-\frac{70\!\cdots\!60}{90\!\cdots\!19}a^{3}+\frac{37\!\cdots\!55}{90\!\cdots\!19}a^{2}+\frac{36\!\cdots\!84}{90\!\cdots\!19}a-\frac{29\!\cdots\!49}{90\!\cdots\!19}$, $\frac{26\!\cdots\!31}{90\!\cdots\!19}a^{20}+\frac{48\!\cdots\!32}{90\!\cdots\!19}a^{19}-\frac{82\!\cdots\!14}{90\!\cdots\!19}a^{18}-\frac{10\!\cdots\!26}{15\!\cdots\!41}a^{17}+\frac{96\!\cdots\!73}{90\!\cdots\!19}a^{16}+\frac{16\!\cdots\!78}{90\!\cdots\!19}a^{15}-\frac{56\!\cdots\!87}{90\!\cdots\!19}a^{14}+\frac{15\!\cdots\!04}{90\!\cdots\!19}a^{13}+\frac{18\!\cdots\!84}{90\!\cdots\!19}a^{12}-\frac{14\!\cdots\!09}{90\!\cdots\!19}a^{11}-\frac{35\!\cdots\!03}{90\!\cdots\!19}a^{10}+\frac{46\!\cdots\!38}{90\!\cdots\!19}a^{9}+\frac{37\!\cdots\!42}{90\!\cdots\!19}a^{8}-\frac{73\!\cdots\!91}{90\!\cdots\!19}a^{7}-\frac{20\!\cdots\!95}{90\!\cdots\!19}a^{6}+\frac{56\!\cdots\!04}{90\!\cdots\!19}a^{5}+\frac{29\!\cdots\!32}{90\!\cdots\!19}a^{4}-\frac{18\!\cdots\!57}{90\!\cdots\!19}a^{3}+\frac{10\!\cdots\!37}{90\!\cdots\!19}a^{2}+\frac{92\!\cdots\!29}{90\!\cdots\!19}a-\frac{79\!\cdots\!06}{90\!\cdots\!19}$, $\frac{29\!\cdots\!36}{90\!\cdots\!19}a^{20}+\frac{60\!\cdots\!73}{90\!\cdots\!19}a^{19}-\frac{89\!\cdots\!80}{90\!\cdots\!19}a^{18}-\frac{87\!\cdots\!78}{90\!\cdots\!19}a^{17}+\frac{10\!\cdots\!25}{90\!\cdots\!19}a^{16}+\frac{40\!\cdots\!26}{90\!\cdots\!19}a^{15}-\frac{61\!\cdots\!53}{90\!\cdots\!19}a^{14}+\frac{50\!\cdots\!60}{90\!\cdots\!19}a^{13}+\frac{19\!\cdots\!86}{90\!\cdots\!19}a^{12}-\frac{11\!\cdots\!40}{90\!\cdots\!19}a^{11}-\frac{37\!\cdots\!60}{90\!\cdots\!19}a^{10}+\frac{44\!\cdots\!66}{90\!\cdots\!19}a^{9}+\frac{40\!\cdots\!24}{90\!\cdots\!19}a^{8}-\frac{72\!\cdots\!51}{90\!\cdots\!19}a^{7}-\frac{22\!\cdots\!87}{90\!\cdots\!19}a^{6}+\frac{57\!\cdots\!89}{90\!\cdots\!19}a^{5}+\frac{33\!\cdots\!30}{90\!\cdots\!19}a^{4}-\frac{18\!\cdots\!47}{90\!\cdots\!19}a^{3}+\frac{10\!\cdots\!43}{90\!\cdots\!19}a^{2}+\frac{95\!\cdots\!85}{90\!\cdots\!19}a-\frac{79\!\cdots\!67}{90\!\cdots\!19}$ Copy content Toggle raw display (assuming GRH)
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 45298926008459270000 \) (assuming GRH)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{21}\cdot(2\pi)^{0}\cdot 45298926008459270000 \cdot 3}{2\cdot\sqrt{808066270618405716993861719647864148675120272481133649}}\cr\approx \mathstrut & 0.158520554857754 \end{aligned}\] (assuming GRH)

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^21 - x^20 - 314*x^19 + 641*x^18 + 36738*x^17 - 95806*x^16 - 2134622*x^15 + 6573588*x^14 + 67487244*x^13 - 249054401*x^12 - 1162017486*x^11 + 5450875699*x^10 + 9285707168*x^9 - 67555921271*x^8 + 824221871*x^7 + 429237041242*x^6 - 490449416375*x^5 - 989353991611*x^4 + 2305780509364*x^3 - 753973198685*x^2 - 1273935520834*x + 833882527031)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^21 - x^20 - 314*x^19 + 641*x^18 + 36738*x^17 - 95806*x^16 - 2134622*x^15 + 6573588*x^14 + 67487244*x^13 - 249054401*x^12 - 1162017486*x^11 + 5450875699*x^10 + 9285707168*x^9 - 67555921271*x^8 + 824221871*x^7 + 429237041242*x^6 - 490449416375*x^5 - 989353991611*x^4 + 2305780509364*x^3 - 753973198685*x^2 - 1273935520834*x + 833882527031, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^21 - x^20 - 314*x^19 + 641*x^18 + 36738*x^17 - 95806*x^16 - 2134622*x^15 + 6573588*x^14 + 67487244*x^13 - 249054401*x^12 - 1162017486*x^11 + 5450875699*x^10 + 9285707168*x^9 - 67555921271*x^8 + 824221871*x^7 + 429237041242*x^6 - 490449416375*x^5 - 989353991611*x^4 + 2305780509364*x^3 - 753973198685*x^2 - 1273935520834*x + 833882527031);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^21 - x^20 - 314*x^19 + 641*x^18 + 36738*x^17 - 95806*x^16 - 2134622*x^15 + 6573588*x^14 + 67487244*x^13 - 249054401*x^12 - 1162017486*x^11 + 5450875699*x^10 + 9285707168*x^9 - 67555921271*x^8 + 824221871*x^7 + 429237041242*x^6 - 490449416375*x^5 - 989353991611*x^4 + 2305780509364*x^3 - 753973198685*x^2 - 1273935520834*x + 833882527031);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_{21}$ (as 21T1):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A cyclic group of order 21
The 21 conjugacy class representatives for $C_{21}$
Character table for $C_{21}$

Intermediate fields

3.3.790321.2, 7.7.4195872914689.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type $21$ $21$ $21$ R ${\href{/padicField/11.7.0.1}{7} }^{3}$ $21$ ${\href{/padicField/17.7.0.1}{7} }^{3}$ ${\href{/padicField/19.3.0.1}{3} }^{7}$ ${\href{/padicField/23.7.0.1}{7} }^{3}$ $21$ $21$ ${\href{/padicField/37.3.0.1}{3} }^{7}$ $21$ $21$ $21$ ${\href{/padicField/53.7.0.1}{7} }^{3}$ ${\href{/padicField/59.1.0.1}{1} }^{21}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(7\) Copy content Toggle raw display Deg $21$$3$$7$$14$
\(127\) Copy content Toggle raw display 127.21.20.1$x^{21} + 127$$21$$1$$20$$C_{21}$$[\ ]_{21}$