Properties

Label 21.21.8080662706...3649.2
Degree $21$
Signature $[21, 0]$
Discriminant $7^{14}\cdot 127^{20}$
Root discriminant $369.00$
Ramified primes $7, 127$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group $C_{21}$ (as 21T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![833882527031, -1273935520834, -753973198685, 2305780509364, -989353991611, -490449416375, 429237041242, 824221871, -67555921271, 9285707168, 5450875699, -1162017486, -249054401, 67487244, 6573588, -2134622, -95806, 36738, 641, -314, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^21 - x^20 - 314*x^19 + 641*x^18 + 36738*x^17 - 95806*x^16 - 2134622*x^15 + 6573588*x^14 + 67487244*x^13 - 249054401*x^12 - 1162017486*x^11 + 5450875699*x^10 + 9285707168*x^9 - 67555921271*x^8 + 824221871*x^7 + 429237041242*x^6 - 490449416375*x^5 - 989353991611*x^4 + 2305780509364*x^3 - 753973198685*x^2 - 1273935520834*x + 833882527031)
 
gp: K = bnfinit(x^21 - x^20 - 314*x^19 + 641*x^18 + 36738*x^17 - 95806*x^16 - 2134622*x^15 + 6573588*x^14 + 67487244*x^13 - 249054401*x^12 - 1162017486*x^11 + 5450875699*x^10 + 9285707168*x^9 - 67555921271*x^8 + 824221871*x^7 + 429237041242*x^6 - 490449416375*x^5 - 989353991611*x^4 + 2305780509364*x^3 - 753973198685*x^2 - 1273935520834*x + 833882527031, 1)
 

Normalized defining polynomial

\( x^{21} - x^{20} - 314 x^{19} + 641 x^{18} + 36738 x^{17} - 95806 x^{16} - 2134622 x^{15} + 6573588 x^{14} + 67487244 x^{13} - 249054401 x^{12} - 1162017486 x^{11} + 5450875699 x^{10} + 9285707168 x^{9} - 67555921271 x^{8} + 824221871 x^{7} + 429237041242 x^{6} - 490449416375 x^{5} - 989353991611 x^{4} + 2305780509364 x^{3} - 753973198685 x^{2} - 1273935520834 x + 833882527031 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $21$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[21, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(808066270618405716993861719647864148675120272481133649=7^{14}\cdot 127^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $369.00$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 127$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(889=7\cdot 127\)
Dirichlet character group:    $\lbrace$$\chi_{889}(512,·)$, $\chi_{889}(1,·)$, $\chi_{889}(555,·)$, $\chi_{889}(711,·)$, $\chi_{889}(8,·)$, $\chi_{889}(778,·)$, $\chi_{889}(781,·)$, $\chi_{889}(849,·)$, $\chi_{889}(856,·)$, $\chi_{889}(25,·)$, $\chi_{889}(540,·)$, $\chi_{889}(354,·)$, $\chi_{889}(165,·)$, $\chi_{889}(625,·)$, $\chi_{889}(64,·)$, $\chi_{889}(107,·)$, $\chi_{889}(431,·)$, $\chi_{889}(200,·)$, $\chi_{889}(884,·)$, $\chi_{889}(569,·)$, $\chi_{889}(764,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{103} a^{18} - \frac{14}{103} a^{17} - \frac{4}{103} a^{16} + \frac{33}{103} a^{15} - \frac{33}{103} a^{14} + \frac{6}{103} a^{13} + \frac{44}{103} a^{12} + \frac{48}{103} a^{11} - \frac{49}{103} a^{10} - \frac{50}{103} a^{9} - \frac{22}{103} a^{8} + \frac{42}{103} a^{7} - \frac{39}{103} a^{6} - \frac{47}{103} a^{5} + \frac{15}{103} a^{4} + \frac{5}{103} a^{3} + \frac{30}{103} a^{2} - \frac{5}{103} a + \frac{39}{103}$, $\frac{1}{6077} a^{19} + \frac{25}{6077} a^{18} - \frac{1889}{6077} a^{17} + \frac{804}{6077} a^{16} + \frac{2696}{6077} a^{15} + \frac{2118}{6077} a^{14} + \frac{2132}{6077} a^{13} - \frac{1738}{6077} a^{12} - \frac{11}{103} a^{11} - \frac{107}{6077} a^{10} + \frac{603}{6077} a^{9} + \frac{626}{6077} a^{8} + \frac{1290}{6077} a^{7} + \frac{595}{6077} a^{6} - \frac{170}{6077} a^{5} - \frac{2397}{6077} a^{4} + \frac{1667}{6077} a^{3} + \frac{1577}{6077} a^{2} - \frac{2731}{6077} a + \frac{1624}{6077}$, $\frac{1}{9080622060491966811248367602423154285203056379033527101569553273283434902779163759781413120170919} a^{20} - \frac{388198803005312649842917773145151604718672130588625910889764334742049256528669884472773099879}{9080622060491966811248367602423154285203056379033527101569553273283434902779163759781413120170919} a^{19} + \frac{41790754324291206277272823458581623501151008366780793826829175787857462263087244061465616584516}{9080622060491966811248367602423154285203056379033527101569553273283434902779163759781413120170919} a^{18} - \frac{594790771539208758422869901270036069849420188831099529319150571485853504481446655087354137523121}{9080622060491966811248367602423154285203056379033527101569553273283434902779163759781413120170919} a^{17} - \frac{2006496043195778423375722622798360148476372142172143965471329364877756545170396771956926072697620}{9080622060491966811248367602423154285203056379033527101569553273283434902779163759781413120170919} a^{16} + \frac{475995791020272133857535292995082972973354335299926304220823935896023276067079158877546042085238}{9080622060491966811248367602423154285203056379033527101569553273283434902779163759781413120170919} a^{15} + \frac{576068925161639726098399485354617352195986950388079332740960641889585762650017854356894118183}{153908848482914691716074027159714479410221294559890289857111072428532794962358707792905307121541} a^{14} + \frac{3199292461334122885556032458623505720878798422345936963742884541127216479650292741868611982008253}{9080622060491966811248367602423154285203056379033527101569553273283434902779163759781413120170919} a^{13} + \frac{3451478595587508938387732992578407579306617451727505547235844017098565991707640353444024313993129}{9080622060491966811248367602423154285203056379033527101569553273283434902779163759781413120170919} a^{12} + \frac{2063384045998831168594625340359593456648398679647423516716588374849218146097629669037825768154417}{9080622060491966811248367602423154285203056379033527101569553273283434902779163759781413120170919} a^{11} - \frac{2255874697432176712519365691208808463713287425816025014850540666948374895391370377882661994867809}{9080622060491966811248367602423154285203056379033527101569553273283434902779163759781413120170919} a^{10} - \frac{1229356623187360378638118360958192281205044336919566844039239313154840327048863045493488805255406}{9080622060491966811248367602423154285203056379033527101569553273283434902779163759781413120170919} a^{9} - \frac{2067175746452948452993971600230473988379049268490336482281250120188647905303162735351617173120576}{9080622060491966811248367602423154285203056379033527101569553273283434902779163759781413120170919} a^{8} + \frac{804961423689196231012294245404996757293623753117762440677721136243745757498911003892366874687716}{9080622060491966811248367602423154285203056379033527101569553273283434902779163759781413120170919} a^{7} - \frac{4400681996973029150438201614488391746031901207646017735631400739940595595920656552998160928804814}{9080622060491966811248367602423154285203056379033527101569553273283434902779163759781413120170919} a^{6} - \frac{2640905374730635231066663198490282204093292793602879244167639046520187470078448548992872548454595}{9080622060491966811248367602423154285203056379033527101569553273283434902779163759781413120170919} a^{5} + \frac{1592417110106784794119037145734345068354853840409282145431252182539489835348162561601171350200364}{9080622060491966811248367602423154285203056379033527101569553273283434902779163759781413120170919} a^{4} + \frac{993184782934977996365950829340947205436451003230984435133262785270744570067408658547541977705811}{9080622060491966811248367602423154285203056379033527101569553273283434902779163759781413120170919} a^{3} - \frac{1297895964576249394222435668733775862542197855819027209957774792621150134300277774134373763790385}{9080622060491966811248367602423154285203056379033527101569553273283434902779163759781413120170919} a^{2} - \frac{1190998920041473920910164690822724276422533506709790985484966822245325365609632002617323724734646}{9080622060491966811248367602423154285203056379033527101569553273283434902779163759781413120170919} a + \frac{2405900021923461448844928903784641140884626686847459910400707547643845508636586745218867924548703}{9080622060491966811248367602423154285203056379033527101569553273283434902779163759781413120170919}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $20$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 45298926008459270000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{21}$ (as 21T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 21
The 21 conjugacy class representatives for $C_{21}$
Character table for $C_{21}$ is not computed

Intermediate fields

3.3.790321.2, 7.7.4195872914689.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $21$ $21$ $21$ R ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ $21$ ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ $21$ $21$ ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ $21$ $21$ $21$ ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ ${\href{/LocalNumberField/59.1.0.1}{1} }^{21}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
7Data not computed
127Data not computed