Properties

Label 21.21.8080662706...3649.1
Degree $21$
Signature $[21, 0]$
Discriminant $7^{14}\cdot 127^{20}$
Root discriminant $369.00$
Ramified primes $7, 127$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group $C_{21}$ (as 21T1)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![73391024141, -511171099198, 189916353207, 739147737632, -425427767421, -357627209452, 267134979239, 59456573110, -70546887095, 1043228987, 8308415958, -1066077495, -415588104, 78717981, 10025575, -2475109, -119809, 39405, 641, -314, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^21 - x^20 - 314*x^19 + 641*x^18 + 39405*x^17 - 119809*x^16 - 2475109*x^15 + 10025575*x^14 + 78717981*x^13 - 415588104*x^12 - 1066077495*x^11 + 8308415958*x^10 + 1043228987*x^9 - 70546887095*x^8 + 59456573110*x^7 + 267134979239*x^6 - 357627209452*x^5 - 425427767421*x^4 + 739147737632*x^3 + 189916353207*x^2 - 511171099198*x + 73391024141)
 
gp: K = bnfinit(x^21 - x^20 - 314*x^19 + 641*x^18 + 39405*x^17 - 119809*x^16 - 2475109*x^15 + 10025575*x^14 + 78717981*x^13 - 415588104*x^12 - 1066077495*x^11 + 8308415958*x^10 + 1043228987*x^9 - 70546887095*x^8 + 59456573110*x^7 + 267134979239*x^6 - 357627209452*x^5 - 425427767421*x^4 + 739147737632*x^3 + 189916353207*x^2 - 511171099198*x + 73391024141, 1)
 

Normalized defining polynomial

\( x^{21} - x^{20} - 314 x^{19} + 641 x^{18} + 39405 x^{17} - 119809 x^{16} - 2475109 x^{15} + 10025575 x^{14} + 78717981 x^{13} - 415588104 x^{12} - 1066077495 x^{11} + 8308415958 x^{10} + 1043228987 x^{9} - 70546887095 x^{8} + 59456573110 x^{7} + 267134979239 x^{6} - 357627209452 x^{5} - 425427767421 x^{4} + 739147737632 x^{3} + 189916353207 x^{2} - 511171099198 x + 73391024141 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $21$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[21, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(808066270618405716993861719647864148675120272481133649=7^{14}\cdot 127^{20}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $369.00$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 127$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(889=7\cdot 127\)
Dirichlet character group:    $\lbrace$$\chi_{889}(512,·)$, $\chi_{889}(1,·)$, $\chi_{889}(835,·)$, $\chi_{889}(8,·)$, $\chi_{889}(457,·)$, $\chi_{889}(778,·)$, $\chi_{889}(823,·)$, $\chi_{889}(527,·)$, $\chi_{889}(660,·)$, $\chi_{889}(214,·)$, $\chi_{889}(540,·)$, $\chi_{889}(221,·)$, $\chi_{889}(361,·)$, $\chi_{889}(800,·)$, $\chi_{889}(100,·)$, $\chi_{889}(64,·)$, $\chi_{889}(879,·)$, $\chi_{889}(177,·)$, $\chi_{889}(809,·)$, $\chi_{889}(249,·)$, $\chi_{889}(764,·)$$\rbrace$
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{37} a^{14} + \frac{5}{37} a^{13} - \frac{13}{37} a^{12} + \frac{9}{37} a^{11} - \frac{11}{37} a^{10} - \frac{2}{37} a^{9} + \frac{6}{37} a^{8} - \frac{15}{37} a^{7} - \frac{6}{37} a^{6} + \frac{9}{37} a^{5} + \frac{18}{37} a^{4} - \frac{17}{37} a^{3} + \frac{11}{37} a^{2} + \frac{17}{37} a$, $\frac{1}{37} a^{15} - \frac{1}{37} a^{13} + \frac{18}{37} a^{11} + \frac{16}{37} a^{10} + \frac{16}{37} a^{9} - \frac{8}{37} a^{8} - \frac{5}{37} a^{7} + \frac{2}{37} a^{6} + \frac{10}{37} a^{5} + \frac{4}{37} a^{4} - \frac{15}{37} a^{3} - \frac{1}{37} a^{2} - \frac{11}{37} a$, $\frac{1}{37} a^{16} + \frac{5}{37} a^{13} + \frac{5}{37} a^{12} - \frac{12}{37} a^{11} + \frac{5}{37} a^{10} - \frac{10}{37} a^{9} + \frac{1}{37} a^{8} - \frac{13}{37} a^{7} + \frac{4}{37} a^{6} + \frac{13}{37} a^{5} + \frac{3}{37} a^{4} - \frac{18}{37} a^{3} + \frac{17}{37} a$, $\frac{1}{37} a^{17} + \frac{17}{37} a^{13} + \frac{16}{37} a^{12} - \frac{3}{37} a^{11} + \frac{8}{37} a^{10} + \frac{11}{37} a^{9} - \frac{6}{37} a^{8} + \frac{5}{37} a^{7} + \frac{6}{37} a^{6} - \frac{5}{37} a^{5} + \frac{3}{37} a^{4} + \frac{11}{37} a^{3} - \frac{1}{37} a^{2} - \frac{11}{37} a$, $\frac{1}{83428229} a^{18} - \frac{973093}{83428229} a^{17} + \frac{1123538}{83428229} a^{16} + \frac{825068}{83428229} a^{15} - \frac{867799}{83428229} a^{14} - \frac{18353312}{83428229} a^{13} + \frac{4918030}{83428229} a^{12} + \frac{761478}{2254817} a^{11} - \frac{36625050}{83428229} a^{10} + \frac{32031497}{83428229} a^{9} - \frac{13961214}{83428229} a^{8} + \frac{12210671}{83428229} a^{7} - \frac{38598631}{83428229} a^{6} + \frac{3452607}{83428229} a^{5} - \frac{40605712}{83428229} a^{4} - \frac{13835179}{83428229} a^{3} - \frac{19565266}{83428229} a^{2} - \frac{30347869}{83428229} a + \frac{3088}{15133}$, $\frac{1}{7222706070056123} a^{19} + \frac{19974108}{7222706070056123} a^{18} - \frac{20744423177750}{7222706070056123} a^{17} + \frac{19642486555106}{7222706070056123} a^{16} - \frac{49564957906972}{7222706070056123} a^{15} + \frac{45189285770560}{7222706070056123} a^{14} + \frac{939418934205615}{7222706070056123} a^{13} + \frac{2845477719081034}{7222706070056123} a^{12} + \frac{1162129863956101}{7222706070056123} a^{11} + \frac{1462753327350497}{7222706070056123} a^{10} - \frac{21460729477524}{47832490530173} a^{9} + \frac{2836958857755509}{7222706070056123} a^{8} + \frac{1863414783836418}{7222706070056123} a^{7} + \frac{494667970305176}{7222706070056123} a^{6} - \frac{2968795684346199}{7222706070056123} a^{5} + \frac{295872636941181}{7222706070056123} a^{4} - \frac{197015580956911}{7222706070056123} a^{3} - \frac{1966526384920019}{7222706070056123} a^{2} - \frac{1436858755092640}{7222706070056123} a - \frac{580227798739}{1310122631971}$, $\frac{1}{1105117351040232582713630381952729400767840515704149207822916918345559029429092203} a^{20} + \frac{10504127762190704171631692019167137614829085124632306014699417534}{1105117351040232582713630381952729400767840515704149207822916918345559029429092203} a^{19} + \frac{1906062262930579273651506523794069742488416571166875623359239000857676962}{1105117351040232582713630381952729400767840515704149207822916918345559029429092203} a^{18} - \frac{1925352739390533952419741269989888689501859240903321537419472341807552489456465}{1105117351040232582713630381952729400767840515704149207822916918345559029429092203} a^{17} - \frac{1476119661641955731006288956863867466041591714962329217630444671000646983509402}{1105117351040232582713630381952729400767840515704149207822916918345559029429092203} a^{16} - \frac{6603512736382640081868975875820620637920065426491386826392868612609708900956022}{1105117351040232582713630381952729400767840515704149207822916918345559029429092203} a^{15} + \frac{6202271048269137237867759959309454972651640328167588917231425800209123289949227}{1105117351040232582713630381952729400767840515704149207822916918345559029429092203} a^{14} + \frac{515247007179746187490341931696854589358574686210144473296109773853556417205679990}{1105117351040232582713630381952729400767840515704149207822916918345559029429092203} a^{13} + \frac{360619098711781842961128161780471857753538528028091701697800557585182006562288062}{1105117351040232582713630381952729400767840515704149207822916918345559029429092203} a^{12} - \frac{232671074672872682633825081562959114164559348658322092026386373699448380162661690}{1105117351040232582713630381952729400767840515704149207822916918345559029429092203} a^{11} - \frac{248345465474395159744935538645520792742982321658943808583034309815197731805900704}{1105117351040232582713630381952729400767840515704149207822916918345559029429092203} a^{10} - \frac{369180711500388080925359116472476636765352394911021849193400710888626364058182101}{1105117351040232582713630381952729400767840515704149207822916918345559029429092203} a^{9} + \frac{439643304098979957417777777795053556131396797416202175530497187626676543073599745}{1105117351040232582713630381952729400767840515704149207822916918345559029429092203} a^{8} - \frac{3760137314362565725803630271045196218233695017583443583202011918808623376609759}{1105117351040232582713630381952729400767840515704149207822916918345559029429092203} a^{7} - \frac{267478168713281615537531331499144770966434118612496408068982161255245849551281557}{1105117351040232582713630381952729400767840515704149207822916918345559029429092203} a^{6} + \frac{35868223797762066387984076326875298439335646190265974111112451021771441817019755}{1105117351040232582713630381952729400767840515704149207822916918345559029429092203} a^{5} + \frac{352854692889378224649917464734796672121820281772994926568037815523395578480051637}{1105117351040232582713630381952729400767840515704149207822916918345559029429092203} a^{4} + \frac{105367298757715275724258140971885646028397397890588722092208882339195801941540004}{1105117351040232582713630381952729400767840515704149207822916918345559029429092203} a^{3} + \frac{346037462370474892883053367155441423099195279239068008038537900525329398832216262}{1105117351040232582713630381952729400767840515704149207822916918345559029429092203} a^{2} + \frac{547318530417878407884431720729373302482175211031166444580076155625575136486371138}{1105117351040232582713630381952729400767840515704149207822916918345559029429092203} a - \frac{21019340981941162324176084292808265913325104488194439449685204868256208528690}{200456620903361614858267800100259278209294488609495593655526377352722479490131}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $20$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 84153812913585720000 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_{21}$ (as 21T1):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A cyclic group of order 21
The 21 conjugacy class representatives for $C_{21}$
Character table for $C_{21}$ is not computed

Intermediate fields

3.3.790321.1, 7.7.4195872914689.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $21$ ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ $21$ R $21$ $21$ $21$ ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ $21$ $21$ ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{21}$ $21$ $21$ $21$ $21$ ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
7Data not computed
127Data not computed