Normalized defining polynomial
\( x^{21} - 7 x^{20} - 85 x^{19} + 600 x^{18} + 2969 x^{17} - 20148 x^{16} - 58666 x^{15} + 340921 x^{14} + 762604 x^{13} - 3106176 x^{12} - 6541447 x^{11} + 14463151 x^{10} + 32672825 x^{9} - 27520996 x^{8} - 75363341 x^{7} + 12806508 x^{6} + 63845912 x^{5} - 2336541 x^{4} - 19620833 x^{3} + 1847525 x^{2} + 1883508 x - 325961 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(781286945806524287560821363867897500532736=2^{18}\cdot 13^{14}\cdot 31^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $98.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 13, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $\frac{1}{71} a^{16} - \frac{6}{71} a^{15} + \frac{4}{71} a^{14} - \frac{20}{71} a^{13} + \frac{19}{71} a^{12} - \frac{18}{71} a^{11} - \frac{27}{71} a^{10} + \frac{20}{71} a^{9} + \frac{8}{71} a^{8} - \frac{4}{71} a^{7} + \frac{6}{71} a^{6} + \frac{34}{71} a^{5} - \frac{9}{71} a^{4} - \frac{33}{71} a^{3} + \frac{14}{71} a^{2} - \frac{17}{71} a$, $\frac{1}{71} a^{17} - \frac{32}{71} a^{15} + \frac{4}{71} a^{14} - \frac{30}{71} a^{13} + \frac{25}{71} a^{12} + \frac{7}{71} a^{11} - \frac{14}{71} a^{9} - \frac{27}{71} a^{8} - \frac{18}{71} a^{7} - \frac{1}{71} a^{6} - \frac{18}{71} a^{5} - \frac{16}{71} a^{4} + \frac{29}{71} a^{3} - \frac{4}{71} a^{2} - \frac{31}{71} a$, $\frac{1}{4615} a^{18} - \frac{28}{4615} a^{17} - \frac{8}{4615} a^{16} + \frac{472}{4615} a^{15} + \frac{522}{4615} a^{14} - \frac{349}{923} a^{13} - \frac{521}{4615} a^{12} + \frac{1644}{4615} a^{11} + \frac{2036}{4615} a^{10} + \frac{136}{355} a^{9} + \frac{6}{355} a^{8} - \frac{138}{355} a^{7} - \frac{556}{4615} a^{6} + \frac{97}{4615} a^{5} - \frac{2011}{4615} a^{4} - \frac{2034}{4615} a^{3} - \frac{1571}{4615} a^{2} - \frac{37}{4615} a - \frac{29}{65}$, $\frac{1}{3604315} a^{19} + \frac{1}{55451} a^{18} + \frac{6423}{3604315} a^{17} + \frac{17213}{3604315} a^{16} + \frac{873363}{3604315} a^{15} - \frac{756274}{3604315} a^{14} - \frac{22086}{50765} a^{13} - \frac{319419}{3604315} a^{12} - \frac{64252}{3604315} a^{11} - \frac{820934}{3604315} a^{10} - \frac{47566}{277255} a^{9} + \frac{2289}{5041} a^{8} - \frac{215368}{3604315} a^{7} - \frac{75726}{3604315} a^{6} + \frac{270528}{720863} a^{5} + \frac{778143}{3604315} a^{4} - \frac{10733}{327665} a^{3} + \frac{246021}{720863} a^{2} + \frac{123414}{720863} a - \frac{2957}{50765}$, $\frac{1}{227242246415669696494986175501952398559147580120441695} a^{20} + \frac{1734377081467157643837347344057902903485523952}{45448449283133939298997235100390479711829516024088339} a^{19} - \frac{217208120081882621281060149672097721815141144859}{227242246415669696494986175501952398559147580120441695} a^{18} - \frac{112506848079709749824556559083436719343755493511332}{17480172801205361268845090423227107581472890778495515} a^{17} + \frac{852687829175134590229404175738824270489861167839174}{227242246415669696494986175501952398559147580120441695} a^{16} - \frac{7302720569159000694469597544119382670169925894684158}{227242246415669696494986175501952398559147580120441695} a^{15} - \frac{21048868634646484755429139974745609023763058535298495}{45448449283133939298997235100390479711829516024088339} a^{14} + \frac{30236037141124488450946122407686519639835664768351591}{227242246415669696494986175501952398559147580120441695} a^{13} + \frac{8375399873562417131096027913002285511319035956887227}{45448449283133939298997235100390479711829516024088339} a^{12} + \frac{80022567909976808106646802691622635929602262145044578}{227242246415669696494986175501952398559147580120441695} a^{11} - \frac{877998066498654423574750231488561140640074535431956}{45448449283133939298997235100390479711829516024088339} a^{10} + \frac{7058887709233946732098129780642566699040796674190043}{17480172801205361268845090423227107581472890778495515} a^{9} + \frac{23749418947546735005404416243607712160228856203576806}{227242246415669696494986175501952398559147580120441695} a^{8} + \frac{46893163358584782894549159377686574422281606215725757}{227242246415669696494986175501952398559147580120441695} a^{7} - \frac{87113863171067357077330568740131705877761726381097993}{227242246415669696494986175501952398559147580120441695} a^{6} - \frac{82625668827412446284079636656015394780404809341533816}{227242246415669696494986175501952398559147580120441695} a^{5} + \frac{110057449687680405003040656813760577734007474044717569}{227242246415669696494986175501952398559147580120441695} a^{4} + \frac{90688670613944632448463015569337887364287488441846873}{227242246415669696494986175501952398559147580120441695} a^{3} + \frac{77491979681428642770275452280046635170484827032773167}{227242246415669696494986175501952398559147580120441695} a^{2} - \frac{67616061548827258277343872960805213582383046358574233}{227242246415669696494986175501952398559147580120441695} a - \frac{24912669455209361674596359422251971109179783809082}{3200595019939009809788537683126090120551374367893545}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 107348023084000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 21 |
| The 5 conjugacy class representatives for $C_7:C_3$ |
| Character table for $C_7:C_3$ |
Intermediate fields
| 3.3.162409.2, 7.7.1688107729984.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.7.1688107729984.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/7.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $13$ | 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.3.2.1 | $x^{3} + 26$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| $31$ | 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 31.3.2.1 | $x^{3} - 31$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |