Normalized defining polynomial
\( x^{21} - x^{20} - 56 x^{19} + 78 x^{18} + 1275 x^{17} - 2311 x^{16} - 14856 x^{15} + 34478 x^{14} + 89028 x^{13} - 279847 x^{12} - 203817 x^{11} + 1207545 x^{10} - 384952 x^{9} - 2348678 x^{8} + 2510694 x^{7} + 800599 x^{6} - 2545651 x^{5} + 1176607 x^{4} + 141870 x^{3} - 220083 x^{2} + 35908 x + 2113 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(77023971602373143047450273918178286388112224004493606492736=2^{6}\cdot 7^{14}\cdot 13^{2}\cdot 43^{2}\cdot 127^{2}\cdot 9955541^{2}\cdot 59601376927^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $636.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 13, 43, 127, 9955541, 59601376927$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $\frac{1}{13} a^{18} + \frac{4}{13} a^{17} - \frac{1}{13} a^{16} - \frac{2}{13} a^{14} - \frac{2}{13} a^{13} + \frac{1}{13} a^{12} - \frac{1}{13} a^{11} + \frac{5}{13} a^{10} + \frac{2}{13} a^{9} + \frac{5}{13} a^{8} + \frac{6}{13} a^{7} + \frac{4}{13} a^{6} + \frac{3}{13} a^{5} - \frac{1}{13} a^{4} - \frac{4}{13} a^{3} + \frac{4}{13} a^{2} + \frac{5}{13} a + \frac{4}{13}$, $\frac{1}{2978321476} a^{19} + \frac{26278653}{2978321476} a^{18} - \frac{1410594847}{2978321476} a^{17} - \frac{229585649}{2978321476} a^{16} - \frac{304045216}{744580369} a^{15} + \frac{496375417}{1489160738} a^{14} - \frac{19498112}{57275413} a^{13} + \frac{91342272}{744580369} a^{12} + \frac{176568255}{744580369} a^{11} + \frac{963657433}{2978321476} a^{10} + \frac{400369521}{2978321476} a^{9} - \frac{675585585}{1489160738} a^{8} - \frac{468051161}{2978321476} a^{7} + \frac{505573675}{1489160738} a^{6} + \frac{1005717291}{2978321476} a^{5} - \frac{1167451361}{2978321476} a^{4} - \frac{105932222}{744580369} a^{3} - \frac{330890022}{744580369} a^{2} - \frac{4321955}{114550826} a + \frac{1264311141}{2978321476}$, $\frac{1}{8870398814402818576} a^{20} + \frac{6569663}{4435199407201409288} a^{19} + \frac{6640073110521}{341169185169339176} a^{18} - \frac{275797338190147}{1009376287483252} a^{17} - \frac{2905347684770636793}{8870398814402818576} a^{16} - \frac{1008192647052446455}{4435199407201409288} a^{15} + \frac{887222159513788003}{4435199407201409288} a^{14} + \frac{444403150350121395}{1108799851800352322} a^{13} - \frac{281742100996894281}{2217599703600704644} a^{12} - \frac{1266611451442398467}{8870398814402818576} a^{11} - \frac{773417043490294363}{4435199407201409288} a^{10} - \frac{4377691053443048401}{8870398814402818576} a^{9} + \frac{577457285778930825}{8870398814402818576} a^{8} - \frac{1964303401885098415}{8870398814402818576} a^{7} - \frac{1870235779471976251}{8870398814402818576} a^{6} - \frac{124619249102342703}{4435199407201409288} a^{5} + \frac{927793844494691723}{8870398814402818576} a^{4} - \frac{594807722313782443}{2217599703600704644} a^{3} + \frac{744418191231023925}{4435199407201409288} a^{2} + \frac{664519099052450995}{8870398814402818576} a - \frac{3831993881814367775}{8870398814402818576}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 134278838041000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 48009024000 |
| The 267 conjugacy class representatives for t21n153 are not computed |
| Character table for t21n153 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 45 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.6.0.1}{6} }{,}\,{\href{/LocalNumberField/3.3.0.1}{3} }$ | ${\href{/LocalNumberField/5.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{4}$ | R | ${\href{/LocalNumberField/17.9.0.1}{9} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }^{2}$ | $21$ | $15{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/29.5.0.1}{5} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | R | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{3}$ | $15{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.9.6.1 | $x^{9} - 4 x^{3} + 8$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $13$ | $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{13}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 13.3.0.1 | $x^{3} - 2 x + 6$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 13.3.2.3 | $x^{3} - 52$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 13.5.0.1 | $x^{5} - 2 x + 6$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 13.5.0.1 | $x^{5} - 2 x + 6$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| $43$ | $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 43.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 43.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 43.3.2.3 | $x^{3} - 3483$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.4.0.1 | $x^{4} - x + 20$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 43.7.0.1 | $x^{7} - 2 x + 9$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| $127$ | $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{127}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 127.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 127.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 127.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 127.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 127.3.2.3 | $x^{3} - 10287$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 127.3.0.1 | $x^{3} - x + 9$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 127.5.0.1 | $x^{5} - x + 11$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 9955541 | Data not computed | ||||||
| 59601376927 | Data not computed | ||||||