Normalized defining polynomial
\( x^{21} - x^{20} - 411 x^{19} + 607 x^{18} + 62254 x^{17} - 108464 x^{16} - 4484863 x^{15} + 7108140 x^{14} + 173031855 x^{13} - 193699347 x^{12} - 3778646229 x^{11} + 1964442210 x^{10} + 46446312765 x^{9} + 3367026360 x^{8} - 300255960727 x^{7} - 168967145978 x^{6} + 877037245822 x^{5} + 821403684872 x^{4} - 689763208050 x^{3} - 857581957635 x^{2} - 178654253137 x - 7793070028 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(765176895298263362973031983400530627599596492811897779245148416=2^{8}\cdot 3^{4}\cdot 313^{12}\cdot 3739^{2}\cdot 5023^{2}\cdot 10877617^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $987.34$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 313, 3739, 5023, 10877617$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{16} - \frac{1}{4} a^{12} - \frac{1}{4} a^{11} - \frac{1}{4} a^{10} + \frac{1}{4} a^{8} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{16} - \frac{1}{8} a^{15} - \frac{1}{8} a^{14} - \frac{1}{8} a^{13} - \frac{1}{8} a^{12} - \frac{1}{4} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{7} - \frac{3}{8} a^{6} + \frac{3}{8} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} + \frac{3}{8} a^{2} + \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{24} a^{18} - \frac{1}{24} a^{17} + \frac{1}{24} a^{16} + \frac{1}{24} a^{15} + \frac{1}{24} a^{14} - \frac{1}{8} a^{13} - \frac{1}{12} a^{12} + \frac{1}{24} a^{11} - \frac{1}{12} a^{10} - \frac{1}{6} a^{9} + \frac{11}{24} a^{8} + \frac{1}{8} a^{7} + \frac{1}{24} a^{6} + \frac{1}{3} a^{5} - \frac{5}{24} a^{3} + \frac{3}{8} a^{2} - \frac{1}{3}$, $\frac{1}{12912} a^{19} + \frac{27}{4304} a^{18} - \frac{13}{1076} a^{17} - \frac{76}{807} a^{16} + \frac{637}{6456} a^{15} + \frac{88}{807} a^{14} + \frac{979}{12912} a^{13} + \frac{1063}{6456} a^{12} - \frac{1037}{6456} a^{11} - \frac{611}{4304} a^{10} + \frac{1411}{12912} a^{9} - \frac{4549}{12912} a^{8} - \frac{2155}{6456} a^{7} - \frac{1619}{4304} a^{6} - \frac{4483}{12912} a^{5} + \frac{2527}{12912} a^{4} + \frac{277}{12912} a^{3} - \frac{937}{4304} a^{2} - \frac{119}{12912} a + \frac{367}{3228}$, $\frac{1}{2502619504415716977130767770590005347234277652647937936224898374401993825957124952476688837051494132949014624} a^{20} - \frac{424594899101265247822630055940828849262127248300599713387170541846144965515957489428152775104182362901}{417103250735952829521794628431667557872379608774656322704149729066998970992854158746114806175249022158169104} a^{19} + \frac{22791634469881321246934965043400276019174241074107191132223439055436574657738861791746862031236476093577677}{2502619504415716977130767770590005347234277652647937936224898374401993825957124952476688837051494132949014624} a^{18} + \frac{1401702239866396504954618292886223748417952744758450902021722441177693783233247770930421789120727047504818}{26068953170997051845112164276979222367023725548416020169009358066687435687053384921632175385953063884885569} a^{17} + \frac{11707861157113093953380808637186720332335459902009652193283541564224802092955545503133728880844793591827975}{1251309752207858488565383885295002673617138826323968968112449187200996912978562476238344418525747066474507312} a^{16} + \frac{45628334529484041287505452522774083880589812506167000071255726666998097181498771185220264063798969382554771}{417103250735952829521794628431667557872379608774656322704149729066998970992854158746114806175249022158169104} a^{15} + \frac{40000793223730535365811463481080525929598564134888932475446382312399397694850098622772250291591078585548793}{834206501471905659043589256863335115744759217549312645408299458133997941985708317492229612350498044316338208} a^{14} + \frac{262128352398795269975542748916844851194889871636617384359438311412349041605579690950188259229653713428339781}{2502619504415716977130767770590005347234277652647937936224898374401993825957124952476688837051494132949014624} a^{13} + \frac{87586221457264946874456678060000894504362796446643407673588438692633140302212763500249337045639336040359097}{625654876103929244282691942647501336808569413161984484056224593600498456489281238119172209262873533237253656} a^{12} + \frac{87943876630301044530781695151111764320289136769421840553911975882073423020435771571552703380562466180920765}{2502619504415716977130767770590005347234277652647937936224898374401993825957124952476688837051494132949014624} a^{11} - \frac{50070137036670132794795079940397661936321700636791182794214411723402073905324315992343735526215718107984923}{417103250735952829521794628431667557872379608774656322704149729066998970992854158746114806175249022158169104} a^{10} - \frac{63461759491858956916824544558232271880718003568135809848800762481051275794411855804262643279429502638733889}{417103250735952829521794628431667557872379608774656322704149729066998970992854158746114806175249022158169104} a^{9} - \frac{1047257897213816153593763438955897068063489381837539770178484981473104269730354378480111021062401113876323287}{2502619504415716977130767770590005347234277652647937936224898374401993825957124952476688837051494132949014624} a^{8} - \frac{262533495709940313626807068945413450123114164870974918236038923616379552370113317189927314416735967102373381}{834206501471905659043589256863335115744759217549312645408299458133997941985708317492229612350498044316338208} a^{7} - \frac{31812363368976860769569188256937098302615717924697313069733050926814521553320971062059559530248966483363099}{312827438051964622141345971323750668404284706580992242028112296800249228244640619059586104631436766618626828} a^{6} - \frac{91095551407353770292183397352894349070576817906860225949035948906692239774751693942853381929273546295525033}{625654876103929244282691942647501336808569413161984484056224593600498456489281238119172209262873533237253656} a^{5} - \frac{217009411394257852395079084168348429748700393350442589723131489235942470708759784201264949164364682915959579}{625654876103929244282691942647501336808569413161984484056224593600498456489281238119172209262873533237253656} a^{4} - \frac{56349542950908406943215978268876659266912822571401044467658285619516357815771493946140922492619473908356531}{1251309752207858488565383885295002673617138826323968968112449187200996912978562476238344418525747066474507312} a^{3} - \frac{600536869720837789871444590673812334718777901145125656538793134923584115296045950011592749247467946084458073}{1251309752207858488565383885295002673617138826323968968112449187200996912978562476238344418525747066474507312} a^{2} - \frac{858528540077451965268529685872066983780580639438753604688747942794766512096815684589590530480967034899269215}{2502619504415716977130767770590005347234277652647937936224898374401993825957124952476688837051494132949014624} a - \frac{279607259939630347363113024561332490258743342537256947712799934080957665850309078479576378743129035681821049}{625654876103929244282691942647501336808569413161984484056224593600498456489281238119172209262873533237253656}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36698290460900000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2939328 |
| The 99 conjugacy class representatives for t21n127 are not computed |
| Character table for t21n127 is not computed |
Intermediate fields
| 7.7.9597924961.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | $21$ | ${\href{/LocalNumberField/11.9.0.1}{9} }{,}\,{\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.9.0.1}{9} }{,}\,{\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.9.0.1}{9} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.9.0.1}{9} }{,}\,{\href{/LocalNumberField/41.6.0.1}{6} }{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.2.2 | $x^{2} + 2 x - 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.6.3.1 | $x^{6} - 6 x^{4} + 9 x^{2} - 27$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 3.6.0.1 | $x^{6} - x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 313 | Data not computed | ||||||
| 3739 | Data not computed | ||||||
| 5023 | Data not computed | ||||||
| 10877617 | Data not computed | ||||||