Normalized defining polynomial
\( x^{21} - 72 x^{19} - 48 x^{18} + 2151 x^{17} + 2868 x^{16} - 33496 x^{15} - 68904 x^{14} + 272475 x^{13} + 838888 x^{12} - 843156 x^{11} - 5263464 x^{10} - 2685461 x^{9} + 14076972 x^{8} + 24653316 x^{7} + 2422720 x^{6} - 37133424 x^{5} - 53201088 x^{4} - 37562432 x^{3} - 15192576 x^{2} - 3376128 x - 321536 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(73753831434876210806676646549709111513743097856=2^{45}\cdot 3^{21}\cdot 29\cdot 157^{2}\cdot 809^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $170.53$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 29, 157, 809$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10} - \frac{1}{4} a^{6} - \frac{1}{4} a^{2}$, $\frac{1}{16} a^{15} - \frac{1}{8} a^{14} - \frac{1}{4} a^{13} - \frac{1}{2} a^{12} + \frac{7}{16} a^{11} + \frac{3}{8} a^{10} - \frac{1}{4} a^{9} - \frac{5}{16} a^{7} + \frac{1}{8} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{5}{16} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{16} - \frac{1}{32} a^{15} - \frac{1}{16} a^{14} + \frac{1}{8} a^{13} - \frac{25}{64} a^{12} - \frac{13}{32} a^{11} + \frac{7}{16} a^{10} - \frac{1}{4} a^{9} - \frac{21}{64} a^{8} + \frac{9}{32} a^{7} + \frac{1}{8} a^{6} + \frac{3}{8} a^{5} - \frac{21}{64} a^{4} + \frac{11}{32} a^{3} + \frac{3}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{512} a^{17} - \frac{1}{32} a^{15} - \frac{3}{32} a^{14} - \frac{105}{512} a^{13} - \frac{19}{128} a^{12} - \frac{13}{32} a^{11} - \frac{25}{64} a^{10} + \frac{171}{512} a^{9} - \frac{3}{64} a^{8} + \frac{53}{128} a^{7} + \frac{27}{64} a^{6} - \frac{37}{512} a^{5} - \frac{5}{128} a^{4} - \frac{21}{128} a^{3} - \frac{1}{16} a^{2} - \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} + \frac{1}{256} a^{16} + \frac{7}{256} a^{15} + \frac{503}{4096} a^{14} + \frac{323}{2048} a^{13} - \frac{171}{512} a^{12} + \frac{155}{512} a^{11} + \frac{571}{4096} a^{10} - \frac{567}{2048} a^{9} + \frac{409}{1024} a^{8} + \frac{27}{256} a^{7} - \frac{1877}{4096} a^{6} + \frac{667}{2048} a^{5} - \frac{307}{1024} a^{4} + \frac{241}{512} a^{3} - \frac{5}{32} a^{2} + \frac{3}{8} a + \frac{1}{16}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{5}{8192} a^{17} + \frac{5}{2048} a^{16} + \frac{279}{32768} a^{15} + \frac{467}{4096} a^{14} - \frac{665}{8192} a^{13} - \frac{1039}{4096} a^{12} - \frac{6005}{32768} a^{11} - \frac{1593}{8192} a^{10} - \frac{3}{512} a^{9} + \frac{157}{4096} a^{8} + \frac{1355}{32768} a^{7} + \frac{287}{1024} a^{6} - \frac{487}{4096} a^{5} + \frac{393}{1024} a^{4} + \frac{743}{2048} a^{3} + \frac{11}{128} a^{2} - \frac{27}{128} a + \frac{15}{64}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} - \frac{1}{65536} a^{18} + \frac{25}{32768} a^{17} - \frac{1289}{262144} a^{16} - \frac{1391}{131072} a^{15} - \frac{7349}{65536} a^{14} + \frac{2579}{16384} a^{13} - \frac{102981}{262144} a^{12} + \frac{60719}{131072} a^{11} + \frac{5437}{32768} a^{10} - \frac{2035}{32768} a^{9} + \frac{51899}{262144} a^{8} + \frac{37329}{131072} a^{7} + \frac{15617}{32768} a^{6} + \frac{2397}{16384} a^{5} + \frac{6099}{16384} a^{4} + \frac{781}{8192} a^{3} - \frac{377}{1024} a^{2} + \frac{127}{256} a + \frac{109}{256}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 343794942967000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 47029248 |
| The 228 conjugacy class representatives for t21n147 are not computed |
| Character table for t21n147 is not computed |
Intermediate fields
| 7.7.670188544.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{3}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | R | ${\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | $21$ | ${\href{/LocalNumberField/43.9.0.1}{9} }{,}\,{\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.9.0.1}{9} }{,}\,{\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ |
| 2.6.10.2 | $x^{6} + 2 x^{5} + 2 x^{4} + 2 x^{2} + 2$ | $6$ | $1$ | $10$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ | |
| 2.12.33.469 | $x^{12} + 6 x^{10} - 6 x^{8} + 8 x^{6} + 4 x^{4} + 8 x^{2} + 6$ | $12$ | $1$ | $33$ | 12T111 | $[8/3, 8/3, 3, 23/6, 23/6]_{3}^{2}$ | |
| 3 | Data not computed | ||||||
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.12.0.1 | $x^{12} - x + 15$ | $1$ | $12$ | $0$ | $C_{12}$ | $[\ ]^{12}$ | |
| $157$ | $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{157}$ | $x + 5$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.2.0.1 | $x^{2} - x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 157.3.2.2 | $x^{3} + 785$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 157.4.0.1 | $x^{4} - x + 15$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 157.4.0.1 | $x^{4} - x + 15$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 809 | Data not computed | ||||||