Normalized defining polynomial
\( x^{21} - 903 x^{19} - 2408 x^{18} + 322371 x^{17} + 1567608 x^{16} - 57217692 x^{15} - 384550677 x^{14} + 5297604816 x^{13} + 46019992039 x^{12} - 239871482424 x^{11} - 2894978733948 x^{10} + 3238401809699 x^{9} + 94345678493136 x^{8} + 111760681819143 x^{7} - 1405026978142459 x^{6} - 4000967262399996 x^{5} + 5000920037348550 x^{4} + 31976002108505938 x^{3} + 39769563390498270 x^{2} + 15884115372049848 x + 1731927086090117 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7246641953163409527953772394951784818867805657911594619889=3^{28}\cdot 7^{14}\cdot 43^{20}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $569.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(2709=3^{2}\cdot 7\cdot 43\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{2709}(64,·)$, $\chi_{2709}(1,·)$, $\chi_{2709}(1387,·)$, $\chi_{2709}(1285,·)$, $\chi_{2709}(970,·)$, $\chi_{2709}(655,·)$, $\chi_{2709}(2584,·)$, $\chi_{2709}(1948,·)$, $\chi_{2709}(1885,·)$, $\chi_{2709}(2080,·)$, $\chi_{2709}(1915,·)$, $\chi_{2709}(1444,·)$, $\chi_{2709}(1003,·)$, $\chi_{2709}(877,·)$, $\chi_{2709}(2482,·)$, $\chi_{2709}(310,·)$, $\chi_{2709}(2104,·)$, $\chi_{2709}(58,·)$, $\chi_{2709}(379,·)$, $\chi_{2709}(1726,·)$, $\chi_{2709}(127,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{7} a^{3}$, $\frac{1}{7} a^{4}$, $\frac{1}{7} a^{5}$, $\frac{1}{49} a^{6}$, $\frac{1}{49} a^{7}$, $\frac{1}{343} a^{8} - \frac{1}{7} a^{2}$, $\frac{1}{343} a^{9}$, $\frac{1}{343} a^{10}$, $\frac{1}{2401} a^{11} - \frac{1}{49} a^{5}$, $\frac{1}{2401} a^{12}$, $\frac{1}{16807} a^{13} - \frac{2}{343} a^{7} + \frac{1}{7} a$, $\frac{1}{621859} a^{14} - \frac{6}{621859} a^{13} + \frac{9}{88837} a^{12} - \frac{6}{88837} a^{11} + \frac{10}{12691} a^{10} - \frac{17}{12691} a^{9} - \frac{9}{12691} a^{8} - \frac{16}{12691} a^{7} + \frac{2}{1813} a^{6} + \frac{90}{1813} a^{5} - \frac{18}{259} a^{4} - \frac{3}{259} a^{3} - \frac{41}{259} a^{2} - \frac{20}{259} a + \frac{15}{37}$, $\frac{1}{4353013} a^{15} - \frac{12}{621859} a^{13} + \frac{48}{621859} a^{12} - \frac{11}{88837} a^{11} + \frac{80}{88837} a^{10} - \frac{1}{2401} a^{9} - \frac{10}{12691} a^{8} - \frac{13}{1813} a^{7} + \frac{65}{12691} a^{6} + \frac{16}{259} a^{5} + \frac{2}{49} a^{4} + \frac{15}{1813} a^{3} - \frac{16}{37} a^{2} + \frac{19}{259} a + \frac{90}{259}$, $\frac{1}{4353013} a^{16} + \frac{13}{621859} a^{13} - \frac{2}{12691} a^{12} + \frac{8}{88837} a^{11} + \frac{26}{88837} a^{10} + \frac{8}{12691} a^{9} - \frac{2}{1813} a^{8} + \frac{58}{12691} a^{7} - \frac{12}{1813} a^{6} + \frac{118}{1813} a^{5} + \frac{57}{1813} a^{4} + \frac{17}{37} a^{2} - \frac{113}{259} a - \frac{5}{37}$, $\frac{1}{30471091} a^{17} - \frac{1}{4353013} a^{14} - \frac{2}{621859} a^{13} + \frac{67}{621859} a^{12} + \frac{110}{621859} a^{11} - \frac{58}{88837} a^{10} + \frac{39}{88837} a^{9} - \frac{75}{88837} a^{8} + \frac{94}{12691} a^{7} + \frac{16}{12691} a^{6} + \frac{869}{12691} a^{5} + \frac{104}{1813} a^{4} + \frac{87}{1813} a^{3} - \frac{57}{1813} a^{2} + \frac{72}{259} a - \frac{62}{259}$, $\frac{1}{5271498743} a^{18} + \frac{81}{5271498743} a^{17} + \frac{85}{753071249} a^{16} + \frac{13}{753071249} a^{15} + \frac{3}{753071249} a^{14} - \frac{1203}{107581607} a^{13} - \frac{66}{15368801} a^{12} + \frac{14188}{107581607} a^{11} - \frac{9673}{15368801} a^{10} - \frac{4182}{15368801} a^{9} - \frac{10170}{15368801} a^{8} - \frac{10916}{2195543} a^{7} + \frac{7268}{2195543} a^{6} - \frac{80783}{2195543} a^{5} + \frac{916}{44807} a^{4} + \frac{20892}{313649} a^{3} - \frac{122350}{313649} a^{2} + \frac{1353}{6401} a + \frac{7942}{44807}$, $\frac{1}{36900491201} a^{19} - \frac{12}{5271498743} a^{17} + \frac{81}{753071249} a^{16} + \frac{23}{753071249} a^{15} + \frac{171}{753071249} a^{14} + \frac{6675}{753071249} a^{13} - \frac{18330}{107581607} a^{12} + \frac{2488}{107581607} a^{11} + \frac{11339}{15368801} a^{10} + \frac{4974}{15368801} a^{9} - \frac{9540}{15368801} a^{8} - \frac{37027}{15368801} a^{7} + \frac{4303}{2195543} a^{6} + \frac{57997}{2195543} a^{5} + \frac{4266}{313649} a^{4} - \frac{4647}{313649} a^{3} - \frac{154403}{313649} a^{2} - \frac{46103}{313649} a + \frac{2533}{44807}$, $\frac{1}{4055347676271788957200058187946219756048358240613968178670683143265511006559686981926613} a^{20} - \frac{49839660744163825776535153050001301860111908802137819679991372917997711921059}{4055347676271788957200058187946219756048358240613968178670683143265511006559686981926613} a^{19} - \frac{17480591679578684750366724243672073705041006417661089655441680189121348422347}{579335382324541279600008312563745679435479748659138311238669020466501572365669568846659} a^{18} - \frac{4204087659671504712380194889450735254433423299888456350107641046657540119386267}{579335382324541279600008312563745679435479748659138311238669020466501572365669568846659} a^{17} - \frac{160642466538384848516130055997329863733835242906042181375186032472571976825322}{11823171067847781216326700256402973049703668339982414515074877968704113721748358547891} a^{16} - \frac{8139484254676299294002850138573927633818106444066148811956177654653519635217201}{82762197474934468514286901794820811347925678379876901605524145780928796052238509835237} a^{15} + \frac{24313962126898315321252829758542162187834732699371955035612333049898227315487564}{82762197474934468514286901794820811347925678379876901605524145780928796052238509835237} a^{14} + \frac{2389973012716861013327298576434513461216204090175677360301763101656953833736023275}{82762197474934468514286901794820811347925678379876901605524145780928796052238509835237} a^{13} - \frac{1526488374560661294950868200912755690862174564016303360252586698773429141119587731}{11823171067847781216326700256402973049703668339982414515074877968704113721748358547891} a^{12} + \frac{1968743365507971399502632602399117608294122746676294812280566515907529474984926819}{11823171067847781216326700256402973049703668339982414515074877968704113721748358547891} a^{11} - \frac{970535028820576545395761763514379567172068285475995473991075878528006267595061597}{1689024438263968745189528608057567578529095477140344930724982566957730531678336935413} a^{10} + \frac{1760537554901461940269451929996255619656115329798447955124845705785351545428381698}{1689024438263968745189528608057567578529095477140344930724982566957730531678336935413} a^{9} + \frac{1828985585740713164904271500682324607535002154489509677103105773094656101308162683}{1689024438263968745189528608057567578529095477140344930724982566957730531678336935413} a^{8} - \frac{4094554316586675180613313866505943661063573443785649383626027589003217818887744531}{1689024438263968745189528608057567578529095477140344930724982566957730531678336935413} a^{7} - \frac{39158487328772322845121978371691154897258694243725298466436722223220389009319745}{6521329877467060792237562193272461693162530799769671547200704891728689311499370407} a^{6} - \frac{8792609080810379818316113550371213137913344033026516200360283549592390391064086804}{241289205466281249312789801151081082647013639591477847246426080993961504525476705059} a^{5} + \frac{2200540248370334794682908523256534305750656126683894209846343520795530162799224317}{34469886495183035616112828735868726092430519941639692463775154427708786360782386437} a^{4} + \frac{22667367049466288288630535026362125181271078593967709275270842193519072363596820}{703467071330266032981894463997320940661847345747748825791329682198138497158824213} a^{3} - \frac{6256299520069829391627479526891390307270855913063203085337096227618420714056842744}{34469886495183035616112828735868726092430519941639692463775154427708786360782386437} a^{2} - \frac{2769136437168921700904444653070788953393438352901277434077144096119248790405005154}{34469886495183035616112828735868726092430519941639692463775154427708786360782386437} a - \frac{38604350260693251346384104887981742604552427688501210254645857564454656398}{100685503148608560806560042682699101885656755287774800622623309127407473627}$
Class group and class number
$C_{6}\times C_{6}$, which has order $36$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1538134121593772200000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| 3.3.7338681.1, 7.7.6321363049.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | R | $21$ | R | $21$ | $21$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/29.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/37.1.0.1}{1} }^{21}$ | $21$ | R | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/59.7.0.1}{7} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43 | Data not computed | ||||||