Normalized defining polynomial
\( x^{21} - 8 x^{20} - 26 x^{19} + 362 x^{18} - 210 x^{17} - 5560 x^{16} + 10446 x^{15} + 37382 x^{14} - 105928 x^{13} - 111352 x^{12} + 494124 x^{11} + 77632 x^{10} - 1188672 x^{9} + 302096 x^{8} + 1451596 x^{7} - 663064 x^{6} - 803144 x^{5} + 470904 x^{4} + 128848 x^{3} - 105968 x^{2} + 12440 x + 104 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(7104507042655360857983379370527686656=2^{18}\cdot 7^{14}\cdot 43^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $56.86$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{2} a^{12}$, $\frac{1}{4} a^{13} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{14}$, $\frac{1}{28} a^{15} + \frac{1}{14} a^{14} - \frac{1}{28} a^{13} + \frac{1}{7} a^{12} - \frac{3}{14} a^{11} - \frac{1}{14} a^{10} - \frac{1}{7} a^{9} - \frac{1}{14} a^{8} - \frac{1}{7} a^{7} + \frac{1}{14} a^{6} + \frac{2}{7} a^{5} - \frac{3}{7} a^{4} - \frac{1}{7} a^{3} - \frac{1}{7} a^{2} - \frac{1}{7} a - \frac{2}{7}$, $\frac{1}{28} a^{16} + \frac{1}{14} a^{14} - \frac{1}{28} a^{13} - \frac{1}{7} a^{11} + \frac{3}{14} a^{9} - \frac{1}{7} a^{7} - \frac{5}{14} a^{6} - \frac{2}{7} a^{4} + \frac{1}{7} a^{3} + \frac{1}{7} a^{2} - \frac{3}{7}$, $\frac{1}{28} a^{17} + \frac{1}{14} a^{14} + \frac{1}{14} a^{13} + \frac{1}{14} a^{12} - \frac{1}{14} a^{11} - \frac{1}{7} a^{10} - \frac{3}{14} a^{9} - \frac{1}{14} a^{7} - \frac{1}{7} a^{6} + \frac{1}{7} a^{5} + \frac{3}{7} a^{3} + \frac{2}{7} a^{2} - \frac{1}{7} a - \frac{3}{7}$, $\frac{1}{980} a^{18} + \frac{1}{245} a^{17} + \frac{4}{245} a^{16} - \frac{1}{980} a^{15} + \frac{2}{245} a^{14} + \frac{11}{980} a^{13} + \frac{9}{245} a^{12} + \frac{9}{49} a^{11} + \frac{9}{49} a^{10} - \frac{1}{35} a^{9} + \frac{57}{245} a^{8} + \frac{73}{490} a^{7} + \frac{13}{98} a^{6} + \frac{103}{245} a^{5} - \frac{34}{245} a^{4} + \frac{68}{245} a^{3} + \frac{96}{245} a^{2} + \frac{59}{245} a - \frac{89}{245}$, $\frac{1}{1960} a^{19} - \frac{3}{196} a^{16} + \frac{3}{490} a^{15} - \frac{1}{10} a^{14} + \frac{101}{980} a^{13} + \frac{9}{490} a^{12} + \frac{15}{98} a^{11} + \frac{29}{245} a^{10} + \frac{3}{98} a^{9} - \frac{69}{490} a^{8} - \frac{13}{245} a^{7} - \frac{237}{490} a^{6} - \frac{201}{490} a^{5} + \frac{67}{245} a^{4} + \frac{52}{245} a^{3} + \frac{20}{49} a^{2} - \frac{8}{49} a + \frac{3}{245}$, $\frac{1}{29871594050379496217316920} a^{20} + \frac{323547026748457193673}{29871594050379496217316920} a^{19} + \frac{116145481820952934435}{1493579702518974810865846} a^{18} - \frac{1373238586499250571185}{1493579702518974810865846} a^{17} + \frac{9342348347108022034213}{2133685289312821158379780} a^{16} - \frac{31137007846704184542267}{2987159405037949621731692} a^{15} - \frac{1460459824689469972514833}{14935797025189748108658460} a^{14} + \frac{177164592504209916879734}{3733949256297437027164615} a^{13} + \frac{1115814694039993140793907}{7467898512594874054329230} a^{12} - \frac{817330437740328048303041}{3733949256297437027164615} a^{11} + \frac{266449703515420625237202}{3733949256297437027164615} a^{10} + \frac{836592844154167196710043}{3733949256297437027164615} a^{9} - \frac{982232779944673931198813}{7467898512594874054329230} a^{8} + \frac{68500486996568158838749}{746789851259487405432923} a^{7} + \frac{3011658329441530159505463}{7467898512594874054329230} a^{6} - \frac{844116823386443938848399}{7467898512594874054329230} a^{5} - \frac{497449288673627106673292}{3733949256297437027164615} a^{4} + \frac{1847251208711794590759856}{3733949256297437027164615} a^{3} - \frac{158973714349864774402157}{746789851259487405432923} a^{2} - \frac{810862068390178876641282}{3733949256297437027164615} a + \frac{8817732586940642158727}{533421322328205289594945}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 713026797535 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_3\times C_7:C_3$ (as 21T7):
| A solvable group of order 63 |
| The 15 conjugacy class representatives for $C_3\times C_7:C_3$ |
| Character table for $C_3\times C_7:C_3$ |
Intermediate fields
| \(\Q(\zeta_{7})^+\), 7.7.525346636864.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.3.0.1}{3} }^{7}$ | R | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | $21$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | $21$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $7$ | 7.3.2.2 | $x^{3} - 7$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| 7.9.6.1 | $x^{9} + 42 x^{6} + 539 x^{3} + 2744$ | $3$ | $3$ | $6$ | $C_3^2$ | $[\ ]_{3}^{3}$ | |
| $43$ | $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{43}$ | $x + 9$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |
| 43.3.2.1 | $x^{3} - 43$ | $3$ | $1$ | $2$ | $C_3$ | $[\ ]_{3}$ | |