Normalized defining polynomial
\( x^{21} - 3 x^{20} - 360 x^{19} + 490 x^{18} + 52133 x^{17} + 4783 x^{16} - 3971188 x^{15} - 5849120 x^{14} + 170036977 x^{13} + 491175409 x^{12} - 3850955660 x^{11} - 18177913114 x^{10} + 29752081517 x^{9} + 310985105459 x^{8} + 389336823036 x^{7} - 1591049812736 x^{6} - 6296785324498 x^{5} - 9291161181634 x^{4} - 6244315926316 x^{3} - 1033295027152 x^{2} + 792815974550 x + 289256832754 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(671224291585908496499363217353382867321944006414911171198976=2^{38}\cdot 809^{7}\cdot 103763375049979^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $706.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 809, 103763375049979$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{12} - \frac{1}{2} a^{9} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{12} - \frac{1}{2} a^{10} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{15} - \frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{8}$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{8}$, $\frac{1}{4} a^{17} - \frac{1}{4} a^{16} + \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{18} - \frac{1}{4} a^{16} + \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{8} a^{19} - \frac{1}{8} a^{18} - \frac{1}{8} a^{17} - \frac{1}{8} a^{16} - \frac{1}{4} a^{15} - \frac{1}{4} a^{14} - \frac{1}{4} a^{13} + \frac{1}{4} a^{12} + \frac{3}{8} a^{11} + \frac{1}{8} a^{10} + \frac{1}{8} a^{9} + \frac{1}{8} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{4}$, $\frac{1}{104038444590703588199647264734410016223043107769785813973596012773192026234142110062004737086231600688} a^{20} + \frac{1388943284470933583268743338658816611932459451954078504687147610750323209596380286357631650153844811}{52019222295351794099823632367205008111521553884892906986798006386596013117071055031002368543115800344} a^{19} - \frac{1243812931956851181364937572664908291431031843637995388891332267903642380032234269095413512180686259}{26009611147675897049911816183602504055760776942446453493399003193298006558535527515501184271557900172} a^{18} + \frac{2655570012058507580604104178963992242661478577824733372475228647277062512759555016705726448357339263}{26009611147675897049911816183602504055760776942446453493399003193298006558535527515501184271557900172} a^{17} - \frac{6231762486021668754213783485042801522532140105866703181575865144253264016021902912592343119232602269}{104038444590703588199647264734410016223043107769785813973596012773192026234142110062004737086231600688} a^{16} + \frac{1029265955929426770795009324703345318752796727308897167691188020028107960350781377880501694182959492}{6502402786918974262477954045900626013940194235611613373349750798324501639633881878875296067889475043} a^{15} - \frac{2120277922885805290306395485696841801101228632041452940654755490169519916527091324617070797951128245}{13004805573837948524955908091801252027880388471223226746699501596649003279267763757750592135778950086} a^{14} - \frac{1733838022318506637766232583017446781487047482580012498870291869430170866970507785351498592756601795}{26009611147675897049911816183602504055760776942446453493399003193298006558535527515501184271557900172} a^{13} - \frac{9821599211327926279030556033728492201325193829843531347039582124035505386727768875849166346336420559}{104038444590703588199647264734410016223043107769785813973596012773192026234142110062004737086231600688} a^{12} + \frac{9921945923579165011560175880229438614510954476918527005896455911412795116903889369309876462404970695}{52019222295351794099823632367205008111521553884892906986798006386596013117071055031002368543115800344} a^{11} - \frac{1675454408041390312293205620522630206868693693250936091017366039406362931223552363970459251967290993}{26009611147675897049911816183602504055760776942446453493399003193298006558535527515501184271557900172} a^{10} + \frac{7573801748875705625888664270420061419854346653371429566575781932559961170088975388114709979090401789}{26009611147675897049911816183602504055760776942446453493399003193298006558535527515501184271557900172} a^{9} - \frac{37449697979903587654314882360016520310335767923353816412901747691711941872014556682131516104632258793}{104038444590703588199647264734410016223043107769785813973596012773192026234142110062004737086231600688} a^{8} + \frac{11009152731601058796128132833608704023326082439232858207420984519737650195919756761886046375683686559}{26009611147675897049911816183602504055760776942446453493399003193298006558535527515501184271557900172} a^{7} + \frac{1328121812541211056807777816581631200504172235698492158805964559203970737441038271128939860448668571}{6502402786918974262477954045900626013940194235611613373349750798324501639633881878875296067889475043} a^{6} + \frac{1302555427809477633295677087735476220828549910875900429153684509190114600686772985263485505361766396}{6502402786918974262477954045900626013940194235611613373349750798324501639633881878875296067889475043} a^{5} + \frac{600191128129877180215475030612872161620341144165281780155886492646406727607998394739139447215560919}{52019222295351794099823632367205008111521553884892906986798006386596013117071055031002368543115800344} a^{4} - \frac{1036737836238399858596513558129026449344986078979086644490642129321350069359864480291601488664650881}{26009611147675897049911816183602504055760776942446453493399003193298006558535527515501184271557900172} a^{3} - \frac{5329494922824743746348457068963701907007134654283313093798272157981576220630236391038486214177137683}{26009611147675897049911816183602504055760776942446453493399003193298006558535527515501184271557900172} a^{2} + \frac{4421579327150743939760685569809995221621459196817449247605844385686654741252199110171023436413791819}{13004805573837948524955908091801252027880388471223226746699501596649003279267763757750592135778950086} a - \frac{7862494974734472829259116281919192548642241196479492290596355089503348900499706594623346891983300551}{52019222295351794099823632367205008111521553884892906986798006386596013117071055031002368543115800344}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 369878398618000000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5878656 |
| The 84 conjugacy class representatives for t21n135 are not computed |
| Character table for t21n135 is not computed |
Intermediate fields
| 7.7.670188544.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | $21$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.9.0.1}{9} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/41.14.0.1}{14} }{,}\,{\href{/LocalNumberField/41.7.0.1}{7} }$ | ${\href{/LocalNumberField/43.9.0.1}{9} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/53.6.0.1}{6} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.8.8 | $x^{4} + 4 x + 2$ | $4$ | $1$ | $8$ | $S_4$ | $[8/3, 8/3]_{3}^{2}$ |
| 2.8.22.136 | $x^{8} + 4 x^{7} + 4 x^{2} + 14$ | $8$ | $1$ | $22$ | $\textrm{GL(2,3)}$ | $[8/3, 8/3, 7/2]_{3}^{2}$ | |
| 2.9.8.1 | $x^{9} - 2$ | $9$ | $1$ | $8$ | $(C_9:C_3):C_2$ | $[\ ]_{9}^{6}$ | |
| 809 | Data not computed | ||||||
| 103763375049979 | Data not computed | ||||||