Normalized defining polynomial
\( x^{21} - 84 x^{19} + 3024 x^{17} - 60928 x^{15} - 138 x^{14} + 752640 x^{13} + 7728 x^{12} - 5870592 x^{11} - 170016 x^{10} + 28700672 x^{9} + 1854720 x^{8} - 84318144 x^{7} - 10386432 x^{6} + 135502080 x^{5} + 27697152 x^{4} - 94947328 x^{3} - 27697152 x^{2} + 10063872 x - 577536 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6623268093347351492485520944725602280711389184=2^{18}\cdot 3^{28}\cdot 7^{32}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $152.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{14} a^{7} - \frac{2}{7}$, $\frac{1}{14} a^{8} - \frac{2}{7} a$, $\frac{1}{28} a^{9} + \frac{5}{14} a^{2}$, $\frac{1}{56} a^{10} - \frac{9}{28} a^{3}$, $\frac{1}{56} a^{11} - \frac{9}{28} a^{4}$, $\frac{1}{784} a^{12} - \frac{3}{392} a^{11} + \frac{3}{392} a^{10} + \frac{1}{196} a^{9} - \frac{1}{98} a^{8} - \frac{1}{49} a^{7} + \frac{3}{7} a^{6} + \frac{131}{392} a^{5} + \frac{27}{196} a^{4} - \frac{69}{196} a^{3} + \frac{19}{98} a^{2} - \frac{5}{49} a - \frac{24}{49}$, $\frac{1}{1568} a^{13} + \frac{3}{392} a^{11} + \frac{3}{392} a^{10} + \frac{1}{98} a^{9} + \frac{3}{98} a^{8} + \frac{1}{98} a^{7} - \frac{37}{784} a^{6} - \frac{3}{7} a^{5} + \frac{25}{98} a^{4} - \frac{27}{196} a^{3} - \frac{23}{49} a^{2} + \frac{8}{49} a + \frac{5}{49}$, $\frac{1}{3136} a^{14} - \frac{53}{1568} a^{7} - \frac{3}{8} a^{5} - \frac{1}{2} a^{3} - \frac{12}{49}$, $\frac{1}{3136} a^{15} - \frac{53}{1568} a^{8} - \frac{3}{8} a^{6} - \frac{1}{2} a^{4} - \frac{12}{49} a$, $\frac{1}{6272} a^{16} - \frac{53}{3136} a^{9} + \frac{3}{112} a^{7} + \frac{1}{4} a^{5} - \frac{6}{49} a^{2} + \frac{1}{7}$, $\frac{1}{87808} a^{17} + \frac{1}{43904} a^{16} - \frac{1}{10976} a^{15} - \frac{1}{10976} a^{14} + \frac{3}{392} a^{11} + \frac{59}{43904} a^{10} - \frac{389}{21952} a^{9} - \frac{377}{10976} a^{8} + \frac{37}{2744} a^{7} + \frac{1}{8} a^{6} + \frac{2}{7} a^{5} + \frac{1}{196} a^{4} - \frac{271}{1372} a^{3} + \frac{275}{686} a^{2} + \frac{164}{343} a + \frac{129}{343}$, $\frac{1}{12468736} a^{18} + \frac{1}{6234368} a^{17} + \frac{31}{779296} a^{16} + \frac{125}{1558592} a^{15} - \frac{1}{111328} a^{14} + \frac{17}{55664} a^{13} - \frac{1}{3976} a^{12} + \frac{37467}{6234368} a^{11} - \frac{26821}{3117184} a^{10} + \frac{4929}{1558592} a^{9} - \frac{1945}{194824} a^{8} - \frac{62}{3479} a^{7} - \frac{7447}{27832} a^{6} - \frac{19}{71} a^{5} + \frac{74335}{194824} a^{4} + \frac{16025}{97412} a^{3} - \frac{16027}{48706} a^{2} - \frac{737}{24353} a + \frac{29}{497}$, $\frac{1}{24937472} a^{19} - \frac{19}{6234368} a^{17} - \frac{141}{3117184} a^{16} + \frac{19}{194824} a^{15} + \frac{39}{1558592} a^{14} + \frac{23}{111328} a^{13} - \frac{7109}{12468736} a^{12} + \frac{139}{27832} a^{11} - \frac{6085}{779296} a^{10} - \frac{297}{21952} a^{9} - \frac{4623}{389648} a^{8} + \frac{26283}{779296} a^{7} - \frac{25001}{55664} a^{6} + \frac{128907}{389648} a^{5} + \frac{225}{6958} a^{4} - \frac{761}{48706} a^{3} - \frac{19287}{48706} a^{2} - \frac{8670}{24353} a - \frac{6817}{24353}$, $\frac{1}{49874944} a^{20} + \frac{5}{1558592} a^{17} + \frac{165}{3117184} a^{16} - \frac{9}{111328} a^{15} + \frac{27}{389648} a^{14} - \frac{5541}{24937472} a^{13} + \frac{15}{55664} a^{12} - \frac{2885}{890624} a^{11} - \frac{5333}{779296} a^{10} - \frac{2753}{194824} a^{9} + \frac{419}{55664} a^{8} + \frac{8009}{389648} a^{7} - \frac{155097}{779296} a^{6} + \frac{11233}{27832} a^{5} - \frac{748}{3479} a^{4} - \frac{28135}{97412} a^{3} + \frac{5821}{24353} a^{2} - \frac{1397}{3479} a - \frac{10347}{24353}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 72918598906000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_7^2:C_3:C_3$ (as 21T21):
| A solvable group of order 441 |
| The 25 conjugacy class representatives for $C_7^2:C_3:C_3$ |
| Character table for $C_7^2:C_3:C_3$ is not computed |
Intermediate fields
| 3.3.3969.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | $21$ | R | $21$ | $21$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | $21$ | $21$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | $21$ | $21$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{3}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| 2.7.6.1 | $x^{7} - 2$ | $7$ | $1$ | $6$ | $C_7:C_3$ | $[\ ]_{7}^{3}$ | |
| $3$ | 3.3.4.1 | $x^{3} - 3 x^{2} + 21$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 3.9.12.1 | $x^{9} + 18 x^{5} + 18 x^{3} + 27 x^{2} + 216$ | $3$ | $3$ | $12$ | $C_3^2$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||