Normalized defining polynomial
\( x^{21} - 87 x^{19} - 58 x^{18} + 3132 x^{17} + 4176 x^{16} - 58845 x^{15} - 120474 x^{14} + 584937 x^{13} + 1756160 x^{12} - 2422602 x^{11} - 13200252 x^{10} - 4585357 x^{9} + 43304940 x^{8} + 69983079 x^{7} - 5573938 x^{6} - 133907796 x^{5} - 183652200 x^{4} - 128551600 x^{3} - 51909984 x^{2} - 11535552 x - 1098624 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(661001474699906019511835222071349858115923781431046144=2^{12}\cdot 3^{23}\cdot 7^{12}\cdot 109\cdot 173^{9}\cdot 2861^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $365.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7, 109, 173, 2861$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{4} a^{14} + \frac{1}{4} a^{13} - \frac{1}{2} a^{12} - \frac{1}{4} a^{8} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{15} + \frac{1}{8} a^{13} + \frac{1}{4} a^{12} + \frac{3}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{2} a^{6} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} + \frac{3}{8} a^{3} - \frac{1}{2} a^{2} - \frac{1}{8} a + \frac{1}{4}$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{5}{64} a^{14} + \frac{1}{4} a^{13} - \frac{7}{16} a^{12} - \frac{3}{8} a^{11} + \frac{3}{64} a^{10} + \frac{3}{16} a^{9} + \frac{9}{64} a^{8} - \frac{15}{32} a^{7} - \frac{15}{32} a^{6} - \frac{3}{8} a^{5} + \frac{3}{64} a^{4} + \frac{9}{32} a^{3} - \frac{13}{64} a^{2} + \frac{5}{16} a + \frac{3}{16}$, $\frac{1}{512} a^{17} + \frac{1}{512} a^{15} + \frac{3}{256} a^{14} - \frac{47}{128} a^{13} + \frac{1}{16} a^{12} - \frac{205}{512} a^{11} + \frac{67}{256} a^{10} - \frac{207}{512} a^{9} + \frac{13}{32} a^{8} + \frac{15}{256} a^{7} + \frac{57}{128} a^{6} - \frac{13}{512} a^{5} - \frac{13}{128} a^{4} - \frac{113}{512} a^{3} + \frac{55}{256} a^{2} - \frac{7}{128} a + \frac{29}{64}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} + \frac{1}{4096} a^{16} + \frac{33}{1024} a^{15} + \frac{23}{512} a^{14} + \frac{115}{512} a^{13} - \frac{1805}{4096} a^{12} - \frac{63}{128} a^{11} - \frac{1499}{4096} a^{10} + \frac{1015}{2048} a^{9} + \frac{255}{2048} a^{8} + \frac{213}{512} a^{7} - \frac{1749}{4096} a^{6} + \frac{243}{2048} a^{5} + \frac{1527}{4096} a^{4} - \frac{83}{256} a^{3} - \frac{79}{512} a^{2} - \frac{23}{128} a + \frac{3}{256}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{5}{32768} a^{17} + \frac{65}{16384} a^{16} + \frac{123}{2048} a^{15} - \frac{187}{4096} a^{14} - \frac{7741}{32768} a^{13} + \frac{2845}{16384} a^{12} - \frac{13851}{32768} a^{11} + \frac{2281}{8192} a^{10} + \frac{5393}{16384} a^{9} - \frac{1365}{8192} a^{8} + \frac{7131}{32768} a^{7} + \frac{1017}{2048} a^{6} + \frac{12843}{32768} a^{5} - \frac{4239}{16384} a^{4} - \frac{515}{4096} a^{3} + \frac{673}{2048} a^{2} - \frac{929}{2048} a + \frac{253}{1024}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} - \frac{19}{262144} a^{18} + \frac{5}{8192} a^{17} - \frac{337}{65536} a^{16} + \frac{1289}{32768} a^{15} + \frac{20147}{262144} a^{14} + \frac{6195}{65536} a^{13} + \frac{69441}{262144} a^{12} - \frac{53375}{131072} a^{11} - \frac{22531}{131072} a^{10} - \frac{16145}{32768} a^{9} - \frac{37917}{262144} a^{8} - \frac{23719}{131072} a^{7} + \frac{53131}{262144} a^{6} + \frac{8953}{65536} a^{5} - \frac{16819}{65536} a^{4} - \frac{749}{2048} a^{3} - \frac{7387}{16384} a^{2} + \frac{1037}{4096} a - \frac{521}{4096}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 576801478908000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 11757312 |
| The 168 conjugacy class representatives for t21n142 are not computed |
| Character table for t21n142 is not computed |
Intermediate fields
| 7.7.12431698517.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | $18{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }^{5}$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.9.0.1}{9} }{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/37.9.0.1}{9} }{,}\,{\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.9.0.1}{9} }{,}\,{\href{/LocalNumberField/47.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.6.0.1 | $x^{6} - x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 2.12.12.16 | $x^{12} - 16 x^{10} - 23 x^{8} + 24 x^{6} - 29 x^{4} - 8 x^{2} - 13$ | $2$ | $6$ | $12$ | 12T134 | $[2, 2, 2, 2, 2, 2]^{6}$ | |
| 3 | Data not computed | ||||||
| $7$ | 7.3.0.1 | $x^{3} - x + 2$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 7.6.4.3 | $x^{6} + 56 x^{3} + 1323$ | $3$ | $2$ | $4$ | $C_6$ | $[\ ]_{3}^{2}$ | |
| 7.12.8.1 | $x^{12} - 63 x^{9} + 637 x^{6} + 6174 x^{3} + 300125$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| $109$ | $\Q_{109}$ | $x + 6$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 109.2.1.2 | $x^{2} + 654$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 109.3.0.1 | $x^{3} - x + 10$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 109.6.0.1 | $x^{6} - x + 11$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
| 109.9.0.1 | $x^{9} - 2 x + 24$ | $1$ | $9$ | $0$ | $C_9$ | $[\ ]^{9}$ | |
| $173$ | $\Q_{173}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 173.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 173.6.3.1 | $x^{6} - 346 x^{4} + 29929 x^{2} - 129442925$ | $2$ | $3$ | $3$ | $C_6$ | $[\ ]_{2}^{3}$ | |
| 173.12.6.1 | $x^{12} + 196753246 x^{6} - 154963892093 x^{2} + 9677959952884129$ | $2$ | $6$ | $6$ | $C_6\times C_2$ | $[\ ]_{2}^{6}$ | |
| 2861 | Data not computed | ||||||