Normalized defining polynomial
\( x^{21} - 7 x^{20} - 42 x^{19} + 476 x^{18} - 630 x^{17} - 6384 x^{16} + 26810 x^{15} - 16603 x^{14} - 134918 x^{13} + 424998 x^{12} - 570745 x^{11} + 331016 x^{10} + 63070 x^{9} - 212492 x^{8} + 109569 x^{7} - 1302 x^{6} - 18788 x^{5} + 6559 x^{4} - 462 x^{3} - 154 x^{2} + 28 x - 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(656939336998075042895784450637466521=7^{32}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $50.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{7} a^{11} - \frac{1}{7} a^{10} + \frac{3}{7} a^{9} + \frac{3}{7} a^{8} + \frac{2}{7} a^{7} - \frac{2}{7} a^{4} + \frac{2}{7} a^{3} + \frac{1}{7} a^{2} + \frac{1}{7} a + \frac{3}{7}$, $\frac{1}{7} a^{12} + \frac{2}{7} a^{10} - \frac{1}{7} a^{9} - \frac{2}{7} a^{8} + \frac{2}{7} a^{7} - \frac{2}{7} a^{5} + \frac{3}{7} a^{3} + \frac{2}{7} a^{2} - \frac{3}{7} a + \frac{3}{7}$, $\frac{1}{7} a^{13} + \frac{1}{7} a^{10} - \frac{1}{7} a^{9} + \frac{3}{7} a^{8} + \frac{3}{7} a^{7} - \frac{2}{7} a^{6} - \frac{2}{7} a^{3} + \frac{2}{7} a^{2} + \frac{1}{7} a + \frac{1}{7}$, $\frac{1}{7} a^{14} + \frac{3}{7} a^{7} - \frac{3}{7}$, $\frac{1}{7} a^{15} + \frac{3}{7} a^{8} - \frac{3}{7} a$, $\frac{1}{7} a^{16} + \frac{3}{7} a^{9} - \frac{3}{7} a^{2}$, $\frac{1}{7} a^{17} + \frac{3}{7} a^{10} - \frac{3}{7} a^{3}$, $\frac{1}{7} a^{18} + \frac{3}{7} a^{10} - \frac{2}{7} a^{9} - \frac{2}{7} a^{8} + \frac{1}{7} a^{7} + \frac{3}{7} a^{4} + \frac{1}{7} a^{3} - \frac{3}{7} a^{2} - \frac{3}{7} a - \frac{2}{7}$, $\frac{1}{497} a^{19} + \frac{34}{497} a^{18} + \frac{18}{497} a^{17} + \frac{20}{497} a^{16} + \frac{34}{497} a^{15} - \frac{4}{497} a^{14} + \frac{34}{497} a^{13} - \frac{4}{497} a^{12} - \frac{27}{497} a^{11} + \frac{35}{71} a^{10} + \frac{150}{497} a^{9} + \frac{41}{497} a^{8} + \frac{17}{71} a^{7} - \frac{33}{497} a^{6} + \frac{235}{497} a^{5} + \frac{170}{497} a^{4} - \frac{128}{497} a^{3} - \frac{44}{497} a^{2} + \frac{216}{497} a - \frac{194}{497}$, $\frac{1}{118446184548895651} a^{20} - \frac{39780275299035}{118446184548895651} a^{19} - \frac{1089462088114185}{118446184548895651} a^{18} - \frac{759140281659462}{16920883506985093} a^{17} - \frac{2258529781680261}{118446184548895651} a^{16} + \frac{2541515807364591}{118446184548895651} a^{15} - \frac{4413016376558438}{118446184548895651} a^{14} + \frac{1064090422715128}{16920883506985093} a^{13} - \frac{5414815471371506}{118446184548895651} a^{12} + \frac{4422944613686268}{118446184548895651} a^{11} + \frac{517243234115833}{118446184548895651} a^{10} + \frac{26962692514090959}{118446184548895651} a^{9} + \frac{35397358381283085}{118446184548895651} a^{8} - \frac{50140596600464448}{118446184548895651} a^{7} - \frac{3273737619056993}{118446184548895651} a^{6} + \frac{3476927333385278}{16920883506985093} a^{5} - \frac{47422317582364615}{118446184548895651} a^{4} - \frac{8043604254500446}{118446184548895651} a^{3} - \frac{6398914844231469}{16920883506985093} a^{2} - \frac{3424858751595686}{16920883506985093} a + \frac{32335407714728763}{118446184548895651}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 170660357100 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1029 |
| The 133 conjugacy class representatives for t21n28 are not computed |
| Character table for t21n28 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 21 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | $21$ | $21$ | R | $21$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | $21$ | $21$ | R | $21$ | $21$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{7}$ | ${\href{/LocalNumberField/43.7.0.1}{7} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{7}$ | $21$ | $21$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 7 | Data not computed | ||||||
| $29$ | 29.7.0.1 | $x^{7} - x + 3$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 29.7.6.5 | $x^{7} + 58$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ | |
| 29.7.0.1 | $x^{7} - x + 3$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |