Normalized defining polynomial
\( x^{21} - 69 x^{19} - 46 x^{18} + 1962 x^{17} + 2616 x^{16} - 28801 x^{15} - 59346 x^{14} + 217125 x^{13} + 675712 x^{12} - 580797 x^{11} - 3913446 x^{10} - 2291627 x^{9} + 9375876 x^{8} + 17178468 x^{7} + 3193040 x^{6} - 22447152 x^{5} - 33151104 x^{4} - 23541056 x^{3} - 9531648 x^{2} - 2118144 x - 201728 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6422603076433360296030329401308220468133019648=2^{14}\cdot 3^{21}\cdot 149^{6}\cdot 197^{2}\cdot 211^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $151.82$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 149, 197, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{12} - \frac{1}{2} a^{10} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{12} - \frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{15} - \frac{1}{8} a^{13} - \frac{1}{4} a^{12} + \frac{1}{4} a^{11} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} + \frac{1}{8} a^{7} - \frac{1}{2} a^{6} + \frac{3}{8} a^{5} + \frac{1}{4} a^{4} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{64} a^{16} + \frac{1}{32} a^{15} + \frac{7}{64} a^{14} - \frac{7}{32} a^{12} + \frac{3}{16} a^{11} - \frac{9}{64} a^{10} - \frac{1}{16} a^{9} - \frac{11}{64} a^{8} - \frac{3}{32} a^{7} - \frac{17}{64} a^{6} - \frac{1}{8} a^{5} + \frac{13}{64} a^{4} + \frac{7}{32} a^{3} - \frac{1}{8} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{512} a^{17} + \frac{19}{512} a^{15} + \frac{9}{256} a^{14} - \frac{15}{256} a^{13} - \frac{11}{64} a^{12} - \frac{193}{512} a^{11} + \frac{103}{256} a^{10} + \frac{45}{512} a^{9} - \frac{7}{32} a^{8} + \frac{139}{512} a^{7} + \frac{125}{256} a^{6} - \frac{115}{512} a^{5} - \frac{51}{128} a^{4} - \frac{5}{128} a^{3} + \frac{5}{32} a^{2} + \frac{3}{16} a - \frac{1}{8}$, $\frac{1}{4096} a^{18} - \frac{1}{2048} a^{17} + \frac{19}{4096} a^{16} + \frac{27}{1024} a^{15} - \frac{225}{2048} a^{14} - \frac{7}{1024} a^{13} + \frac{1007}{4096} a^{12} - \frac{27}{256} a^{11} + \frac{1681}{4096} a^{10} - \frac{421}{2048} a^{9} - \frac{533}{4096} a^{8} - \frac{455}{1024} a^{7} - \frac{103}{4096} a^{6} - \frac{179}{2048} a^{5} + \frac{321}{1024} a^{4} + \frac{143}{512} a^{3} + \frac{3}{64} a^{2} + \frac{3}{16} a - \frac{7}{32}$, $\frac{1}{32768} a^{19} - \frac{1}{8192} a^{18} + \frac{23}{32768} a^{17} + \frac{35}{16384} a^{16} - \frac{845}{16384} a^{15} - \frac{19}{4096} a^{14} + \frac{1063}{32768} a^{13} + \frac{2873}{16384} a^{12} - \frac{9743}{32768} a^{11} + \frac{3045}{8192} a^{10} - \frac{14209}{32768} a^{9} - \frac{2937}{16384} a^{8} + \frac{1489}{32768} a^{7} + \frac{1005}{4096} a^{6} + \frac{829}{2048} a^{5} + \frac{743}{2048} a^{4} + \frac{125}{2048} a^{3} + \frac{115}{256} a^{2} + \frac{77}{256} a + \frac{7}{128}$, $\frac{1}{262144} a^{20} + \frac{1}{131072} a^{19} - \frac{1}{262144} a^{18} + \frac{13}{16384} a^{17} - \frac{635}{131072} a^{16} + \frac{3571}{65536} a^{15} + \frac{151}{262144} a^{14} + \frac{5079}{65536} a^{13} + \frac{41117}{262144} a^{12} + \frac{17821}{131072} a^{11} - \frac{39433}{262144} a^{10} - \frac{6271}{32768} a^{9} - \frac{115675}{262144} a^{8} - \frac{44761}{131072} a^{7} - \frac{63}{4096} a^{6} - \frac{8107}{16384} a^{5} + \frac{3559}{16384} a^{4} + \frac{579}{8192} a^{3} - \frac{257}{2048} a^{2} - \frac{201}{512} a - \frac{235}{512}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 125551788338000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 705438720 |
| The 246 conjugacy class representatives for t21n151 are not computed |
| Character table for t21n151 is not computed |
Intermediate fields
| 7.7.988410721.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | ${\href{/LocalNumberField/7.14.0.1}{14} }{,}\,{\href{/LocalNumberField/7.7.0.1}{7} }$ | $15{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.8.0.1}{8} }{,}\,{\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.8.0.1}{8} }{,}\,{\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | ${\href{/LocalNumberField/37.8.0.1}{8} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/59.12.0.1}{12} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | $\Q_{2}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 2.2.2.1 | $x^{2} + 2 x + 2$ | $2$ | $1$ | $2$ | $C_2$ | $[2]$ | |
| 2.3.2.1 | $x^{3} - 2$ | $3$ | $1$ | $2$ | $S_3$ | $[\ ]_{3}^{2}$ | |
| 2.5.0.1 | $x^{5} + x^{2} + 1$ | $1$ | $5$ | $0$ | $C_5$ | $[\ ]^{5}$ | |
| 2.10.10.1 | $x^{10} - 9 x^{8} + 54 x^{6} - 38 x^{4} + 41 x^{2} - 17$ | $2$ | $5$ | $10$ | $C_2^4 : C_5$ | $[2, 2, 2, 2]^{5}$ | |
| 3 | Data not computed | ||||||
| $149$ | $\Q_{149}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{149}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{149}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 149.3.0.1 | $x^{3} - x + 18$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 149.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 149.9.6.1 | $x^{9} - 22201 x^{3} + 59543082$ | $3$ | $3$ | $6$ | $S_3\times C_3$ | $[\ ]_{3}^{6}$ | |
| 197 | Data not computed | ||||||
| 211 | Data not computed | ||||||