Normalized defining polynomial
\( x^{21} - 84 x^{19} - 56 x^{18} + 2730 x^{17} + 3234 x^{16} - 43722 x^{15} - 70242 x^{14} + 365904 x^{13} + 743141 x^{12} - 1518279 x^{11} - 4067070 x^{10} + 2152563 x^{9} + 10909626 x^{8} + 3233979 x^{7} - 11269811 x^{6} - 9277107 x^{5} + 1051050 x^{4} + 3366867 x^{3} + 948738 x^{2} - 66192 x - 38809 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(60663096207149471029120391038078960708572561=3^{28}\cdot 7^{36}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $121.59$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(441=3^{2}\cdot 7^{2}\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{441}(64,·)$, $\chi_{441}(1,·)$, $\chi_{441}(400,·)$, $\chi_{441}(337,·)$, $\chi_{441}(274,·)$, $\chi_{441}(211,·)$, $\chi_{441}(148,·)$, $\chi_{441}(85,·)$, $\chi_{441}(22,·)$, $\chi_{441}(421,·)$, $\chi_{441}(358,·)$, $\chi_{441}(295,·)$, $\chi_{441}(232,·)$, $\chi_{441}(169,·)$, $\chi_{441}(106,·)$, $\chi_{441}(43,·)$, $\chi_{441}(379,·)$, $\chi_{441}(316,·)$, $\chi_{441}(253,·)$, $\chi_{441}(190,·)$, $\chi_{441}(127,·)$$\rbrace$ | ||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{19} a^{13} - \frac{1}{19} a^{12} - \frac{4}{19} a^{11} - \frac{8}{19} a^{10} - \frac{8}{19} a^{9} + \frac{9}{19} a^{8} + \frac{7}{19} a^{7} + \frac{8}{19} a^{6} + \frac{7}{19} a^{5} - \frac{9}{19} a^{4} + \frac{3}{19} a^{3} - \frac{6}{19} a^{2} - \frac{6}{19} a + \frac{7}{19}$, $\frac{1}{19} a^{14} - \frac{5}{19} a^{12} + \frac{7}{19} a^{11} + \frac{3}{19} a^{10} + \frac{1}{19} a^{9} - \frac{3}{19} a^{8} - \frac{4}{19} a^{7} - \frac{4}{19} a^{6} - \frac{2}{19} a^{5} - \frac{6}{19} a^{4} - \frac{3}{19} a^{3} + \frac{7}{19} a^{2} + \frac{1}{19} a + \frac{7}{19}$, $\frac{1}{19} a^{15} + \frac{2}{19} a^{12} + \frac{2}{19} a^{11} - \frac{1}{19} a^{10} - \frac{5}{19} a^{9} + \frac{3}{19} a^{8} - \frac{7}{19} a^{7} - \frac{9}{19} a^{5} + \frac{9}{19} a^{4} + \frac{3}{19} a^{3} + \frac{9}{19} a^{2} - \frac{4}{19} a - \frac{3}{19}$, $\frac{1}{19} a^{16} + \frac{4}{19} a^{12} + \frac{7}{19} a^{11} - \frac{8}{19} a^{10} - \frac{6}{19} a^{8} + \frac{5}{19} a^{7} - \frac{6}{19} a^{6} - \frac{5}{19} a^{5} + \frac{2}{19} a^{4} + \frac{3}{19} a^{3} + \frac{8}{19} a^{2} + \frac{9}{19} a + \frac{5}{19}$, $\frac{1}{19} a^{17} - \frac{8}{19} a^{12} + \frac{8}{19} a^{11} - \frac{6}{19} a^{10} + \frac{7}{19} a^{9} + \frac{7}{19} a^{8} + \frac{4}{19} a^{7} + \frac{1}{19} a^{6} - \frac{7}{19} a^{5} + \frac{1}{19} a^{4} - \frac{4}{19} a^{3} - \frac{5}{19} a^{2} - \frac{9}{19} a - \frac{9}{19}$, $\frac{1}{589} a^{18} + \frac{4}{589} a^{17} + \frac{2}{589} a^{16} - \frac{6}{589} a^{15} + \frac{3}{589} a^{14} - \frac{6}{589} a^{13} + \frac{145}{589} a^{12} - \frac{54}{589} a^{11} + \frac{213}{589} a^{10} - \frac{43}{589} a^{9} + \frac{163}{589} a^{8} - \frac{5}{589} a^{7} - \frac{277}{589} a^{6} - \frac{32}{589} a^{5} - \frac{10}{589} a^{4} + \frac{211}{589} a^{3} + \frac{56}{589} a^{2} + \frac{102}{589} a - \frac{239}{589}$, $\frac{1}{116033} a^{19} - \frac{40}{116033} a^{18} + \frac{2895}{116033} a^{17} + \frac{2541}{116033} a^{16} + \frac{1166}{116033} a^{15} - \frac{159}{6107} a^{14} + \frac{2455}{116033} a^{13} + \frac{3145}{116033} a^{12} - \frac{2843}{6107} a^{11} + \frac{39441}{116033} a^{10} - \frac{42616}{116033} a^{9} - \frac{2961}{116033} a^{8} - \frac{55764}{116033} a^{7} + \frac{39095}{116033} a^{6} - \frac{21263}{116033} a^{5} - \frac{1651}{3743} a^{4} - \frac{22031}{116033} a^{3} - \frac{29239}{116033} a^{2} - \frac{2650}{116033} a + \frac{119}{589}$, $\frac{1}{1858320355657315475664462402980699399450671} a^{20} - \frac{39584982186650592557178487481317592}{9433098252067591247027727933912179692643} a^{19} - \frac{309362821494389800820393123903808506018}{1858320355657315475664462402980699399450671} a^{18} + \frac{10688522418932730557002895642384625472143}{1858320355657315475664462402980699399450671} a^{17} - \frac{22120405799639365758699350705633320262093}{1858320355657315475664462402980699399450671} a^{16} + \frac{45728029223111450334583607158440831597451}{1858320355657315475664462402980699399450671} a^{15} + \frac{6835764372784208544590678710638840769915}{1858320355657315475664462402980699399450671} a^{14} - \frac{7649435022823163663798453165785325952543}{1858320355657315475664462402980699399450671} a^{13} - \frac{233628356807572306710676146574880890105007}{1858320355657315475664462402980699399450671} a^{12} - \frac{708187196421106442715080347607717481521114}{1858320355657315475664462402980699399450671} a^{11} - \frac{4530493948994997683373806747778836420583}{9433098252067591247027727933912179692643} a^{10} - \frac{617056579432262974106824383767556775033818}{1858320355657315475664462402980699399450671} a^{9} - \frac{387417806331498198351684651044308680462982}{1858320355657315475664462402980699399450671} a^{8} + \frac{384239701921840810973782414836604150489374}{1858320355657315475664462402980699399450671} a^{7} - \frac{818048192439091202730913162218797834419825}{1858320355657315475664462402980699399450671} a^{6} + \frac{906083619834242344667518534682811718805011}{1858320355657315475664462402980699399450671} a^{5} - \frac{544282749145848015687343384980646430701507}{1858320355657315475664462402980699399450671} a^{4} + \frac{421934760100903668733369745105392600263077}{1858320355657315475664462402980699399450671} a^{3} + \frac{903745477666883766385262512224541096912701}{1858320355657315475664462402980699399450671} a^{2} - \frac{248829195308469065993127704373079694215994}{1858320355657315475664462402980699399450671} a + \frac{3409780452903863212691204228737528036444}{9433098252067591247027727933912179692643}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2419977962290507.0 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 21 |
| The 21 conjugacy class representatives for $C_{21}$ |
| Character table for $C_{21}$ is not computed |
Intermediate fields
| \(\Q(\zeta_{9})^+\), 7.7.13841287201.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $21$ | R | $21$ | R | $21$ | $21$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.1.0.1}{1} }^{21}$ | $21$ | $21$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | $21$ | $21$ | $21$ | ${\href{/LocalNumberField/53.7.0.1}{7} }^{3}$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 3 | Data not computed | ||||||
| 7 | Data not computed | ||||||