Normalized defining polynomial
\( x^{21} - 70 x^{19} + 2051 x^{17} - 32900 x^{15} - 226 x^{14} + 317128 x^{13} + 9338 x^{12} - 1896692 x^{11} - 147546 x^{10} + 7005922 x^{9} + 1133986 x^{8} - 15314839 x^{7} - 4453414 x^{6} + 17693074 x^{5} + 8406636 x^{4} - 7470603 x^{3} - 5851678 x^{2} - 1271592 x - 87464 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(59068958006402020727391274026572452122591232=2^{18}\cdot 7^{35}\cdot 29^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $121.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 7, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2} a^{15} - \frac{1}{2} a$, $\frac{1}{2} a^{16} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{17} - \frac{1}{2} a^{3}$, $\frac{1}{11252} a^{18} + \frac{41}{194} a^{17} - \frac{621}{11252} a^{16} + \frac{21}{194} a^{15} - \frac{2295}{5626} a^{14} - \frac{14}{97} a^{13} + \frac{1559}{5626} a^{12} + \frac{9}{58} a^{11} - \frac{1139}{5626} a^{10} - \frac{1}{97} a^{9} + \frac{7}{58} a^{8} - \frac{1041}{5626} a^{7} - \frac{598}{2813} a^{6} - \frac{8}{29} a^{5} + \frac{1337}{11252} a^{4} + \frac{20}{97} a^{3} + \frac{71}{388} a^{2} + \frac{6}{97} a - \frac{33}{97}$, $\frac{1}{461332} a^{19} - \frac{17}{461332} a^{18} + \frac{59467}{461332} a^{17} - \frac{36133}{461332} a^{16} + \frac{20646}{115333} a^{15} + \frac{106005}{230666} a^{14} + \frac{27833}{230666} a^{13} - \frac{4260}{115333} a^{12} + \frac{22953}{115333} a^{11} + \frac{21741}{230666} a^{10} - \frac{29191}{230666} a^{9} + \frac{19025}{115333} a^{8} + \frac{959}{7954} a^{7} + \frac{19308}{115333} a^{6} + \frac{222885}{461332} a^{5} + \frac{63285}{461332} a^{4} - \frac{51}{15908} a^{3} + \frac{117}{15908} a^{2} + \frac{632}{3977} a + \frac{1823}{3977}$, $\frac{1}{32652737439137667485237601477179024588} a^{20} - \frac{7328955088722833868766542886373}{8163184359784416871309400369294756147} a^{19} + \frac{1067424511596175351561570953106097}{32652737439137667485237601477179024588} a^{18} + \frac{91440843791621916430819059587843416}{8163184359784416871309400369294756147} a^{17} - \frac{282140575643472924185516967348189283}{16326368719568833742618800738589512294} a^{16} + \frac{1854062265877624928386628959430745992}{8163184359784416871309400369294756147} a^{15} + \frac{44064685149814276896468078038565925}{398204115111434969332165871672914934} a^{14} - \frac{3244285714153790259168489855077142217}{16326368719568833742618800738589512294} a^{13} - \frac{6466992949954077126278068581482620377}{16326368719568833742618800738589512294} a^{12} + \frac{258015805515781332446605607481309256}{8163184359784416871309400369294756147} a^{11} - \frac{7404712516843536898395698560020572511}{16326368719568833742618800738589512294} a^{10} - \frac{1431271761699897351324550871332129895}{16326368719568833742618800738589512294} a^{9} + \frac{4007401885940634971904816753986855267}{8163184359784416871309400369294756147} a^{8} + \frac{2551372704100946802438851586801971902}{8163184359784416871309400369294756147} a^{7} - \frac{9376776436900793717585796147626215927}{32652737439137667485237601477179024588} a^{6} + \frac{6657794773829529335812234216989699165}{16326368719568833742618800738589512294} a^{5} + \frac{11018815509067864395944001409233727041}{32652737439137667485237601477179024588} a^{4} + \frac{256683222655409871927740824987270181}{562978231709270129055820715123776286} a^{3} + \frac{89297638214837146649499940757867835}{281489115854635064527910357561888143} a^{2} + \frac{13158816401410229624154697998662840}{281489115854635064527910357561888143} a + \frac{4240506714407222042248875021449564}{281489115854635064527910357561888143}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2949939511390000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2058 |
| The 71 conjugacy class representatives for t21n31 are not computed |
| Character table for t21n31 is not computed |
Intermediate fields
| \(\Q(\zeta_{7})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }$ | R | ${\href{/LocalNumberField/11.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/17.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ | R | $21$ | $21$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{3}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | $21$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 2.6.6.3 | $x^{6} + 2 x^{4} + x^{2} - 7$ | $2$ | $3$ | $6$ | $C_6$ | $[2]^{3}$ | |
| 7 | Data not computed | ||||||
| $29$ | 29.7.6.5 | $x^{7} + 58$ | $7$ | $1$ | $6$ | $C_7$ | $[\ ]_{7}$ |
| 29.7.0.1 | $x^{7} - x + 3$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |
| 29.7.0.1 | $x^{7} - x + 3$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ | |