Normalized defining polynomial
\( x^{21} - 3 x^{20} - 65 x^{19} + 151 x^{18} + 1727 x^{17} - 3019 x^{16} - 24355 x^{15} + 31328 x^{14} + 199461 x^{13} - 184556 x^{12} - 979409 x^{11} + 630480 x^{10} + 2868715 x^{9} - 1213360 x^{8} - 4787032 x^{7} + 1195047 x^{6} + 4026302 x^{5} - 482093 x^{4} - 1211172 x^{3} + 65247 x^{2} + 18885 x - 477 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5849237178513966970769296632946293201918921=3^{28}\cdot 29^{8}\cdot 59^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $108.77$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 29, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{29} a^{14} - \frac{1}{29} a^{13} + \frac{4}{29} a^{12} + \frac{3}{29} a^{11} + \frac{4}{29} a^{10} - \frac{4}{29} a^{9} - \frac{5}{29} a^{8} + \frac{6}{29} a^{7} - \frac{5}{29} a^{6} + \frac{7}{29} a^{5} - \frac{6}{29} a^{4} + \frac{3}{29} a^{3} + \frac{7}{29} a^{2} - \frac{7}{29} a - \frac{13}{29}$, $\frac{1}{29} a^{15} + \frac{3}{29} a^{13} + \frac{7}{29} a^{12} + \frac{7}{29} a^{11} - \frac{9}{29} a^{9} + \frac{1}{29} a^{8} + \frac{1}{29} a^{7} + \frac{2}{29} a^{6} + \frac{1}{29} a^{5} - \frac{3}{29} a^{4} + \frac{10}{29} a^{3} + \frac{9}{29} a - \frac{13}{29}$, $\frac{1}{29} a^{16} + \frac{10}{29} a^{13} - \frac{5}{29} a^{12} - \frac{9}{29} a^{11} + \frac{8}{29} a^{10} + \frac{13}{29} a^{9} - \frac{13}{29} a^{8} + \frac{13}{29} a^{7} - \frac{13}{29} a^{6} + \frac{5}{29} a^{5} - \frac{1}{29} a^{4} - \frac{9}{29} a^{3} - \frac{12}{29} a^{2} + \frac{8}{29} a + \frac{10}{29}$, $\frac{1}{87} a^{17} + \frac{1}{87} a^{15} - \frac{1}{87} a^{14} + \frac{38}{87} a^{13} + \frac{4}{29} a^{12} + \frac{40}{87} a^{11} - \frac{2}{87} a^{10} - \frac{12}{29} a^{9} + \frac{11}{87} a^{8} + \frac{38}{87} a^{7} + \frac{11}{29} a^{6} + \frac{13}{29} a^{5} + \frac{25}{87} a^{4} + \frac{23}{87} a^{3} + \frac{6}{29} a^{2} + \frac{3}{29} a - \frac{5}{29}$, $\frac{1}{87} a^{18} + \frac{1}{87} a^{16} - \frac{1}{87} a^{15} - \frac{1}{87} a^{14} - \frac{12}{29} a^{13} - \frac{1}{3} a^{12} - \frac{32}{87} a^{11} - \frac{6}{29} a^{10} - \frac{7}{87} a^{9} - \frac{28}{87} a^{8} - \frac{9}{29} a^{7} - \frac{9}{29} a^{6} + \frac{13}{87} a^{5} - \frac{4}{87} a^{4} - \frac{4}{29} a^{3} - \frac{1}{29} a^{2} - \frac{1}{29} a - \frac{5}{29}$, $\frac{1}{2523} a^{19} + \frac{1}{841} a^{18} - \frac{3}{841} a^{17} + \frac{8}{2523} a^{16} - \frac{17}{2523} a^{15} + \frac{25}{2523} a^{14} - \frac{955}{2523} a^{13} - \frac{596}{2523} a^{12} - \frac{775}{2523} a^{11} - \frac{1169}{2523} a^{10} - \frac{1018}{2523} a^{9} + \frac{1168}{2523} a^{8} + \frac{955}{2523} a^{7} + \frac{553}{2523} a^{6} - \frac{385}{2523} a^{5} - \frac{1030}{2523} a^{4} + \frac{592}{2523} a^{3} + \frac{125}{841} a^{2} + \frac{46}{841} a + \frac{298}{841}$, $\frac{1}{48733085937169954333622637615669687999} a^{20} + \frac{5961886198935486654003309419047126}{48733085937169954333622637615669687999} a^{19} - \frac{270679401253402843721061305481899113}{48733085937169954333622637615669687999} a^{18} - \frac{82456352169465351764574142454198416}{16244361979056651444540879205223229333} a^{17} - \frac{55723744480027158430615732485952783}{48733085937169954333622637615669687999} a^{16} + \frac{519441370032663057820808231935129000}{48733085937169954333622637615669687999} a^{15} - \frac{184677073692664813303141563935140993}{16244361979056651444540879205223229333} a^{14} + \frac{18381963403704383523146164962134855480}{48733085937169954333622637615669687999} a^{13} + \frac{18548824888753546070998389360322631540}{48733085937169954333622637615669687999} a^{12} - \frac{2403502906050845757252716391167368247}{16244361979056651444540879205223229333} a^{11} - \frac{2221977153029635030859800683684835535}{48733085937169954333622637615669687999} a^{10} + \frac{22745964736344724703978054777008541299}{48733085937169954333622637615669687999} a^{9} + \frac{23846656200250512089184880553245042208}{48733085937169954333622637615669687999} a^{8} - \frac{1808220939692196988175442459263107811}{48733085937169954333622637615669687999} a^{7} - \frac{7654504845332016981988888974450284764}{16244361979056651444540879205223229333} a^{6} + \frac{2114488877528026465458544083156081870}{5414787326352217148180293068407743111} a^{5} + \frac{21058291723094244419599216078994822036}{48733085937169954333622637615669687999} a^{4} + \frac{3831344826844933256991401789988369893}{16244361979056651444540879205223229333} a^{3} + \frac{840838710517025589311881646209503188}{5414787326352217148180293068407743111} a^{2} - \frac{43192742411094287597455670228007935}{560150413070919015328995834662869977} a + \frac{76457866285203149459488883821361133}{5414787326352217148180293068407743111}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3149865113890000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$A_7$ (as 21T33):
| A non-solvable group of order 2520 |
| The 9 conjugacy class representatives for $A_7$ |
| Character table for $A_7$ |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 7 sibling: | data not computed |
| Degree 15 siblings: | data not computed |
| Degree 35 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.3.0.1}{3} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{5}$ | R | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{3}$ | $x + 1$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 3.3.5.3 | $x^{3} + 12$ | $3$ | $1$ | $5$ | $S_3$ | $[5/2]_{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.6.10.1 | $x^{6} - 18$ | $3$ | $2$ | $10$ | $D_{6}$ | $[5/2]_{2}^{2}$ | |
| 3.6.11.2 | $x^{6} + 15$ | $6$ | $1$ | $11$ | $D_{6}$ | $[5/2]_{2}^{2}$ | |
| $29$ | $\Q_{29}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.2 | $x^{4} - 29 x^{2} + 2523$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 59 | Data not computed | ||||||