Normalized defining polynomial
\( x^{21} - 105 x^{19} - 119 x^{18} + 4599 x^{17} + 10290 x^{16} - 103334 x^{15} - 360885 x^{14} + 1118670 x^{13} + 6432475 x^{12} - 1703289 x^{11} - 58140705 x^{10} - 81978176 x^{9} + 197166396 x^{8} + 700361361 x^{7} + 439003348 x^{6} - 1276860228 x^{5} - 3090183579 x^{4} - 3073057932 x^{3} - 1588530069 x^{2} - 391156857 x - 28779219 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(56296849895429213104110710203449262473216=2^{18}\cdot 3^{28}\cdot 7^{26}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $87.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{3}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{4}$, $\frac{1}{21} a^{11} - \frac{1}{3} a^{5}$, $\frac{1}{21} a^{12} - \frac{1}{3} a^{6}$, $\frac{1}{21} a^{13} - \frac{1}{3} a^{7}$, $\frac{1}{21} a^{14} - \frac{1}{3} a^{8}$, $\frac{1}{21} a^{15} - \frac{1}{3} a^{3}$, $\frac{1}{63} a^{16} + \frac{1}{9} a^{10} + \frac{1}{3} a^{7} + \frac{4}{9} a^{4} - \frac{1}{3} a$, $\frac{1}{189} a^{17} + \frac{1}{63} a^{15} - \frac{1}{63} a^{14} - \frac{1}{63} a^{13} - \frac{2}{189} a^{11} - \frac{1}{9} a^{9} + \frac{2}{9} a^{8} + \frac{1}{9} a^{7} - \frac{5}{27} a^{5} - \frac{1}{3} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{567} a^{18} + \frac{1}{189} a^{16} + \frac{2}{189} a^{15} - \frac{4}{189} a^{14} - \frac{1}{63} a^{13} + \frac{1}{81} a^{12} - \frac{1}{63} a^{11} - \frac{4}{27} a^{10} - \frac{1}{27} a^{9} + \frac{4}{27} a^{8} + \frac{4}{9} a^{7} + \frac{40}{81} a^{6} + \frac{1}{9} a^{5} + \frac{11}{27} a^{3} + \frac{1}{9} a^{2}$, $\frac{1}{567} a^{19} - \frac{1}{189} a^{16} + \frac{2}{189} a^{15} - \frac{11}{567} a^{13} - \frac{1}{63} a^{12} + \frac{1}{189} a^{11} - \frac{4}{27} a^{10} - \frac{2}{27} a^{9} + \frac{2}{9} a^{8} + \frac{31}{81} a^{7} + \frac{1}{9} a^{6} + \frac{5}{27} a^{5} - \frac{1}{27} a^{4} + \frac{4}{9} a^{3} - \frac{2}{9} a^{2}$, $\frac{1}{1701355218047919981407766684470391} a^{20} + \frac{1141358790317069337183484383248}{1701355218047919981407766684470391} a^{19} - \frac{892360487833708136858658654689}{1701355218047919981407766684470391} a^{18} + \frac{703275787359527574512924253953}{567118406015973327135922228156797} a^{17} + \frac{3065243910641263001611581900751}{567118406015973327135922228156797} a^{16} + \frac{4050663639120508748914817857411}{189039468671991109045307409385599} a^{15} + \frac{34233552054441755111613429710995}{1701355218047919981407766684470391} a^{14} - \frac{22565835583363084886134489981555}{1701355218047919981407766684470391} a^{13} - \frac{3444324916226137809980846169023}{243050745435417140201109526352913} a^{12} + \frac{4322808439748158709215653155365}{567118406015973327135922228156797} a^{11} + \frac{12688375683016815341328582108571}{81016915145139046733703175450971} a^{10} + \frac{8637979327056790225757162492347}{81016915145139046733703175450971} a^{9} - \frac{37793807405882573102238104606}{243050745435417140201109526352913} a^{8} + \frac{18847421962863085011803181245051}{243050745435417140201109526352913} a^{7} + \frac{92478592837062419558724819227077}{243050745435417140201109526352913} a^{6} + \frac{4305915936563647628099735742959}{27005638381713015577901058483657} a^{5} - \frac{13211359267686933692418075207932}{81016915145139046733703175450971} a^{4} - \frac{19955372973206186897942683685404}{81016915145139046733703175450971} a^{3} - \frac{314307435556730403473381595647}{1000208828952333910292631795691} a^{2} - \frac{445979612775237259218654591070}{1000208828952333910292631795691} a + \frac{44057990948988595325070988564}{1000208828952333910292631795691}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 218203272125000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 21 |
| The 5 conjugacy class representatives for $C_7:C_3$ |
| Character table for $C_7:C_3$ |
Intermediate fields
| 3.3.3969.2, 7.7.2420662999104.1 x7 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 7 sibling: | 7.7.2420662999104.1 |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | R | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/17.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/19.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/23.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/37.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/43.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/59.3.0.1}{3} }^{7}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 3.3.4.3 | $x^{3} - 3 x^{2} + 12$ | $3$ | $1$ | $4$ | $C_3$ | $[2]$ | |
| 7 | Data not computed | ||||||