Normalized defining polynomial
\( x^{21} - 4 x^{20} - 247 x^{19} + 206 x^{18} + 26120 x^{17} + 48172 x^{16} - 1398320 x^{15} - 5954845 x^{14} + 34627675 x^{13} + 269723300 x^{12} - 82115375 x^{11} - 5460723125 x^{10} - 13620643750 x^{9} + 33712984375 x^{8} + 234872046875 x^{7} + 344565771875 x^{6} - 681535453125 x^{5} - 3676016390625 x^{4} - 6956927187500 x^{3} - 7150418593750 x^{2} - 3980805859375 x - 946783203125 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(5623413476177516540600848737861049484025375633579453125=5^{7}\cdot 577^{9}\cdot 3186499350421^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $404.71$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 577, 3186499350421$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{2}$, $\frac{1}{5} a^{8} + \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{25} a^{9} + \frac{1}{25} a^{8} - \frac{2}{25} a^{7} + \frac{11}{25} a^{6} - \frac{1}{5} a^{5} + \frac{12}{25} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2}$, $\frac{1}{125} a^{10} + \frac{1}{125} a^{9} - \frac{7}{125} a^{8} + \frac{6}{125} a^{7} + \frac{11}{25} a^{6} - \frac{18}{125} a^{5} - \frac{7}{25} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{125} a^{11} + \frac{2}{125} a^{9} - \frac{2}{125} a^{8} + \frac{4}{125} a^{7} - \frac{38}{125} a^{6} + \frac{33}{125} a^{5} - \frac{4}{25} a^{4} + \frac{2}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{625} a^{12} + \frac{1}{625} a^{11} - \frac{2}{625} a^{10} + \frac{11}{625} a^{9} + \frac{4}{125} a^{8} + \frac{12}{625} a^{7} - \frac{27}{125} a^{6} - \frac{3}{125} a^{5} - \frac{1}{25} a^{4} - \frac{7}{25} a^{3} - \frac{1}{5} a^{2} - \frac{2}{5} a$, $\frac{1}{625} a^{13} + \frac{2}{625} a^{11} - \frac{2}{625} a^{10} + \frac{4}{625} a^{9} - \frac{38}{625} a^{8} + \frac{33}{625} a^{7} - \frac{54}{125} a^{6} + \frac{7}{25} a^{5} + \frac{1}{25} a^{4} + \frac{7}{25} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{3125} a^{14} + \frac{1}{3125} a^{13} - \frac{2}{3125} a^{12} + \frac{11}{3125} a^{11} - \frac{1}{625} a^{10} - \frac{13}{3125} a^{9} + \frac{8}{625} a^{8} - \frac{33}{625} a^{7} + \frac{19}{125} a^{6} + \frac{36}{125} a^{5} + \frac{6}{25} a^{4} + \frac{3}{25} a^{3} - \frac{2}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{15625} a^{15} + \frac{1}{15625} a^{14} - \frac{7}{15625} a^{13} + \frac{6}{15625} a^{12} + \frac{6}{3125} a^{11} - \frac{43}{15625} a^{10} - \frac{47}{3125} a^{9} + \frac{47}{625} a^{8} + \frac{26}{625} a^{7} + \frac{46}{625} a^{6} - \frac{8}{25} a^{5} + \frac{1}{5} a^{4} - \frac{1}{25} a^{3} + \frac{7}{25} a^{2} + \frac{2}{5} a$, $\frac{1}{15625} a^{16} + \frac{2}{15625} a^{14} - \frac{2}{15625} a^{13} + \frac{4}{15625} a^{12} - \frac{13}{15625} a^{11} + \frac{58}{15625} a^{10} + \frac{36}{3125} a^{9} + \frac{38}{625} a^{8} - \frac{44}{625} a^{7} - \frac{286}{625} a^{6} - \frac{9}{125} a^{5} + \frac{7}{25} a^{4} - \frac{8}{25} a^{3} - \frac{12}{25} a^{2} - \frac{2}{5} a$, $\frac{1}{78125} a^{17} + \frac{1}{78125} a^{16} - \frac{2}{78125} a^{15} + \frac{11}{78125} a^{14} - \frac{1}{15625} a^{13} - \frac{13}{78125} a^{12} - \frac{17}{15625} a^{11} - \frac{58}{15625} a^{10} + \frac{54}{3125} a^{9} + \frac{131}{3125} a^{8} + \frac{1}{625} a^{7} + \frac{296}{625} a^{6} - \frac{1}{25} a^{5} + \frac{62}{125} a^{4} - \frac{4}{25} a^{3} + \frac{7}{25} a^{2} + \frac{1}{5} a$, $\frac{1}{2734375} a^{18} + \frac{6}{2734375} a^{17} - \frac{72}{2734375} a^{16} - \frac{74}{2734375} a^{15} + \frac{8}{109375} a^{14} + \frac{1387}{2734375} a^{13} + \frac{7}{15625} a^{12} - \frac{2098}{546875} a^{11} - \frac{234}{109375} a^{10} - \frac{579}{109375} a^{9} - \frac{1227}{21875} a^{8} + \frac{936}{21875} a^{7} - \frac{52}{625} a^{6} - \frac{1143}{4375} a^{5} + \frac{407}{875} a^{4} + \frac{56}{125} a^{3} - \frac{57}{175} a^{2} - \frac{6}{35} a - \frac{3}{7}$, $\frac{1}{13671875} a^{19} + \frac{1}{13671875} a^{18} + \frac{3}{13671875} a^{17} + \frac{216}{13671875} a^{16} + \frac{37}{2734375} a^{15} + \frac{1892}{13671875} a^{14} - \frac{1632}{2734375} a^{13} + \frac{79}{2734375} a^{12} - \frac{327}{546875} a^{11} + \frac{1193}{546875} a^{10} - \frac{718}{109375} a^{9} + \frac{9857}{109375} a^{8} + \frac{11}{875} a^{7} + \frac{5318}{21875} a^{6} + \frac{1543}{4375} a^{5} - \frac{1881}{4375} a^{4} - \frac{78}{875} a^{3} - \frac{158}{875} a^{2} + \frac{22}{175} a - \frac{13}{35}$, $\frac{1}{13671875} a^{20} + \frac{2}{13671875} a^{18} + \frac{38}{13671875} a^{17} - \frac{206}{13671875} a^{16} + \frac{307}{13671875} a^{15} - \frac{86}{1953125} a^{14} - \frac{1789}{2734375} a^{13} + \frac{141}{2734375} a^{12} - \frac{67}{109375} a^{11} + \frac{2007}{546875} a^{10} - \frac{188}{21875} a^{9} - \frac{642}{109375} a^{8} - \frac{522}{21875} a^{7} + \frac{17}{21875} a^{6} + \frac{1511}{4375} a^{5} + \frac{28}{625} a^{4} + \frac{33}{175} a^{3} - \frac{292}{875} a^{2} + \frac{18}{175} a + \frac{13}{35}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 824917015566000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 61236 |
| The 171 conjugacy class representatives for t21n93 are not computed |
| Character table for t21n93 is not computed |
Intermediate fields
| 7.7.192100033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.14.0.1}{14} }{,}\,{\href{/LocalNumberField/2.7.0.1}{7} }$ | ${\href{/LocalNumberField/3.14.0.1}{14} }{,}\,{\href{/LocalNumberField/3.7.0.1}{7} }$ | R | ${\href{/LocalNumberField/7.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }$ | ${\href{/LocalNumberField/11.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/13.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }$ | ${\href{/LocalNumberField/17.14.0.1}{14} }{,}\,{\href{/LocalNumberField/17.7.0.1}{7} }$ | ${\href{/LocalNumberField/19.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{3}$ | ${\href{/LocalNumberField/31.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }$ | ${\href{/LocalNumberField/53.14.0.1}{14} }{,}\,{\href{/LocalNumberField/53.7.0.1}{7} }$ | $21$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | $\Q_{5}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 577 | Data not computed | ||||||
| 3186499350421 | Data not computed | ||||||