Normalized defining polynomial
\( x^{21} - 3 x^{20} - 285 x^{19} - 618 x^{18} + 24694 x^{17} + 144097 x^{16} - 351266 x^{15} - 4201784 x^{14} - 2744189 x^{13} + 45289276 x^{12} + 85971182 x^{11} - 190160382 x^{10} - 597460436 x^{9} + 132300858 x^{8} + 1596746879 x^{7} + 855294942 x^{6} - 1382558992 x^{5} - 1254203047 x^{4} + 204792471 x^{3} + 311940065 x^{2} - 12091877 x - 3739559 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(56116791749727503481111180028182687505998489030049792=2^{14}\cdot 37^{7}\cdot 281^{6}\cdot 6469^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $324.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 37, 281, 6469$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457} a^{20} - \frac{1932178911272211566233985513437525929850758499905199175452767404358677235165338388992113}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457} a^{19} - \frac{3590716460683280398236037899944980731428356410935031151736512603253898774006225675489324}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457} a^{18} - \frac{4115193439190105390775705832358402488186800213458895838724813780231771622540632899495160}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457} a^{17} + \frac{1684756659818241117050668056803940878277906902934000727138146895051820191304377482331147}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457} a^{16} + \frac{1278984426687839904653851450899650413204245009507091178147897281883110032724399345199911}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457} a^{15} - \frac{1165716744967715100268544897845928574483751677193087438483911217887066412687948521860559}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457} a^{14} - \frac{1400926693408464595060554223611212860869942822541289428585087190633272844743808870877959}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457} a^{13} - \frac{1099698856541313946490462327256117736088458991633504014490923767497281989921725296132913}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457} a^{12} + \frac{3941530819094008252690809863819207529857685138850744667995626328103587621595295707265045}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457} a^{11} - \frac{2096191870564385522496084105658860977004904133030485059856873451138004769804477071959172}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457} a^{10} - \frac{3948380457970994492305453389629261442265015584780771286321756482817964120195183243366637}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457} a^{9} + \frac{1129592811200101879587944726882530174970371182000566743216789511963519349873473209559369}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457} a^{8} - \frac{2216755876919828802541340727974196111408225770846104619926191476680293913700365103608412}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457} a^{7} + \frac{3357230908259706675544264182002345609529859802946790954459242015428116909203799535778097}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457} a^{6} + \frac{4202887689095002219901350707592671838935964910576131634994355692674821942136936027019027}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457} a^{5} + \frac{809517839534565811729949128482167471628010750353628291329482652753915550255976259219892}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457} a^{4} + \frac{1913698609452365569434996557202172780860410643095147406802779116533790126361761978115972}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457} a^{3} - \frac{3325450488108549017443169207899751243069269624114179727791982560827473849759275512420387}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457} a^{2} + \frac{2605946388310189404286640720609827639559552952782520096480127093000604209598791443801400}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457} a - \frac{176907438349359373589245611813607773070263674799954119410345937431727276630429529965582}{8681059001312884691928680235986164601433448751935539960154310567203862677138409760202457}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 28293921121000000000 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 2058 |
| The 140 conjugacy class representatives for t21n32 are not computed |
| Character table for t21n32 is not computed |
Intermediate fields
| 3.3.148.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $21$ | ${\href{/LocalNumberField/5.14.0.1}{14} }{,}\,{\href{/LocalNumberField/5.7.0.1}{7} }$ | $21$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{7}$ | ${\href{/LocalNumberField/13.14.0.1}{14} }{,}\,{\href{/LocalNumberField/13.7.0.1}{7} }$ | ${\href{/LocalNumberField/17.7.0.1}{7} }{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{7}$ | ${\href{/LocalNumberField/19.14.0.1}{14} }{,}\,{\href{/LocalNumberField/19.7.0.1}{7} }$ | ${\href{/LocalNumberField/23.14.0.1}{14} }{,}\,{\href{/LocalNumberField/23.7.0.1}{7} }$ | ${\href{/LocalNumberField/29.14.0.1}{14} }{,}\,{\href{/LocalNumberField/29.7.0.1}{7} }$ | ${\href{/LocalNumberField/31.14.0.1}{14} }{,}\,{\href{/LocalNumberField/31.7.0.1}{7} }$ | R | $21$ | ${\href{/LocalNumberField/43.14.0.1}{14} }{,}\,{\href{/LocalNumberField/43.7.0.1}{7} }$ | $21$ | $21$ | ${\href{/LocalNumberField/59.14.0.1}{14} }{,}\,{\href{/LocalNumberField/59.7.0.1}{7} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $37$ | 37.7.0.1 | $x^{7} - 4 x + 5$ | $1$ | $7$ | $0$ | $C_7$ | $[\ ]^{7}$ |
| 37.14.7.1 | $x^{14} - 405224 x^{8} + 41051622544 x^{2} - 2373296928325$ | $2$ | $7$ | $7$ | $C_{14}$ | $[\ ]_{2}^{7}$ | |
| 281 | Data not computed | ||||||
| 6469 | Data not computed | ||||||