Properties

Label 21.21.5535899331...5993.1
Degree $21$
Signature $[21, 0]$
Discriminant $7^{14}\cdot 71^{3}\cdot 283583^{3}$
Root discriminant $40.44$
Ramified primes $7, 71, 283583$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group 21T56

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 4, 34, -106, -359, 894, 1665, -3561, -3911, 7522, 4990, -8825, -3508, 5767, 1336, -2035, -273, 371, 27, -32, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^21 - x^20 - 32*x^19 + 27*x^18 + 371*x^17 - 273*x^16 - 2035*x^15 + 1336*x^14 + 5767*x^13 - 3508*x^12 - 8825*x^11 + 4990*x^10 + 7522*x^9 - 3911*x^8 - 3561*x^7 + 1665*x^6 + 894*x^5 - 359*x^4 - 106*x^3 + 34*x^2 + 4*x - 1)
 
gp: K = bnfinit(x^21 - x^20 - 32*x^19 + 27*x^18 + 371*x^17 - 273*x^16 - 2035*x^15 + 1336*x^14 + 5767*x^13 - 3508*x^12 - 8825*x^11 + 4990*x^10 + 7522*x^9 - 3911*x^8 - 3561*x^7 + 1665*x^6 + 894*x^5 - 359*x^4 - 106*x^3 + 34*x^2 + 4*x - 1, 1)
 

Normalized defining polynomial

\( x^{21} - x^{20} - 32 x^{19} + 27 x^{18} + 371 x^{17} - 273 x^{16} - 2035 x^{15} + 1336 x^{14} + 5767 x^{13} - 3508 x^{12} - 8825 x^{11} + 4990 x^{10} + 7522 x^{9} - 3911 x^{8} - 3561 x^{7} + 1665 x^{6} + 894 x^{5} - 359 x^{4} - 106 x^{3} + 34 x^{2} + 4 x - 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $21$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[21, 0]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(5535899331867573439772694059695993=7^{14}\cdot 71^{3}\cdot 283583^{3}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.44$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $7, 71, 283583$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$, $a^{16}$, $a^{17}$, $a^{18}$, $a^{19}$, $\frac{1}{1277125048960363} a^{20} + \frac{322406522350638}{1277125048960363} a^{19} - \frac{526559656489440}{1277125048960363} a^{18} + \frac{183755254179975}{1277125048960363} a^{17} - \frac{178159739792074}{1277125048960363} a^{16} + \frac{121141775011701}{1277125048960363} a^{15} - \frac{106066046418229}{1277125048960363} a^{14} + \frac{176827834260538}{1277125048960363} a^{13} - \frac{134607627620658}{1277125048960363} a^{12} - \frac{495559722228066}{1277125048960363} a^{11} + \frac{55552490733584}{1277125048960363} a^{10} - \frac{278176730450245}{1277125048960363} a^{9} + \frac{424368060602670}{1277125048960363} a^{8} - \frac{396824830701216}{1277125048960363} a^{7} + \frac{292906421073616}{1277125048960363} a^{6} - \frac{94035471805590}{1277125048960363} a^{5} + \frac{385114659348438}{1277125048960363} a^{4} + \frac{481151334938344}{1277125048960363} a^{3} + \frac{320807043212997}{1277125048960363} a^{2} - \frac{310126296885933}{1277125048960363} a + \frac{436695738179696}{1277125048960363}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $20$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 13234470682.2 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

21T56:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A non-solvable group of order 15120
The 45 conjugacy class representatives for t21n56
Character table for t21n56 is not computed

Intermediate fields

\(\Q(\zeta_{7})^+\), 7.7.20134393.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 42 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type $21$ $21$ ${\href{/LocalNumberField/5.12.0.1}{12} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{3}$ R $21$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/13.3.0.1}{3} }^{3}$ ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.6.0.1}{6} }{,}\,{\href{/LocalNumberField/17.3.0.1}{3} }$ $21$ ${\href{/LocalNumberField/23.12.0.1}{12} }{,}\,{\href{/LocalNumberField/23.6.0.1}{6} }{,}\,{\href{/LocalNumberField/23.3.0.1}{3} }$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{9}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{3}$ $15{,}\,{\href{/LocalNumberField/31.6.0.1}{6} }$ ${\href{/LocalNumberField/37.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }$ ${\href{/LocalNumberField/41.7.0.1}{7} }^{3}$ ${\href{/LocalNumberField/43.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{6}$ ${\href{/LocalNumberField/47.3.0.1}{3} }^{7}$ $15{,}\,{\href{/LocalNumberField/53.3.0.1}{3} }^{2}$ $15{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
7Data not computed
$71$$\Q_{71}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{71}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{71}$$x + 2$$1$$1$$0$Trivial$[\ ]$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.1.1$x^{2} - 71$$2$$1$$1$$C_2$$[\ ]_{2}$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.1.1$x^{2} - 71$$2$$1$$1$$C_2$$[\ ]_{2}$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
71.2.1.1$x^{2} - 71$$2$$1$$1$$C_2$$[\ ]_{2}$
71.2.0.1$x^{2} - x + 11$$1$$2$$0$$C_2$$[\ ]^{2}$
283583Data not computed