Normalized defining polynomial
\( x^{21} - 3 x^{20} - 30 x^{19} + 86 x^{18} + 349 x^{17} - 953 x^{16} - 2026 x^{15} + 5248 x^{14} + 6380 x^{13} - 15522 x^{12} - 11326 x^{11} + 25300 x^{10} + 11568 x^{9} - 22602 x^{8} - 6770 x^{7} + 10604 x^{6} + 2191 x^{5} - 2351 x^{4} - 352 x^{3} + 194 x^{2} + 23 x - 1 \)
Invariants
| Degree: | $21$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[21, 0]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(53902456438168738728940914094637056=2^{18}\cdot 728809^{5}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 728809$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{9} + \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{4} a^{14} - \frac{1}{4} a^{10} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{15} - \frac{1}{4} a^{11} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{4} a^{16} - \frac{1}{4}$, $\frac{1}{8} a^{17} - \frac{1}{8} a^{16} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{8} a + \frac{3}{8}$, $\frac{1}{8} a^{18} - \frac{1}{8} a^{16} - \frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{3}{8} a^{2} + \frac{3}{8}$, $\frac{1}{8} a^{19} - \frac{1}{8} a^{16} - \frac{1}{4} a^{11} - \frac{1}{4} a^{8} - \frac{1}{2} a^{6} - \frac{3}{8} a^{3} - \frac{1}{2} a - \frac{1}{8}$, $\frac{1}{1301337888175022344} a^{20} - \frac{4695771512853955}{650668944087511172} a^{19} + \frac{19024413221282141}{325334472043755586} a^{18} + \frac{2801051185226524}{162667236021877793} a^{17} + \frac{87755288420667091}{1301337888175022344} a^{16} - \frac{70382622588435193}{650668944087511172} a^{15} + \frac{14205809100110081}{162667236021877793} a^{14} - \frac{38840832489615351}{325334472043755586} a^{13} + \frac{23765069301457497}{325334472043755586} a^{12} - \frac{16317489162781651}{650668944087511172} a^{11} + \frac{16892781939281067}{325334472043755586} a^{10} - \frac{18051876364282605}{325334472043755586} a^{9} + \frac{3376680406535993}{162667236021877793} a^{8} + \frac{44413907333473525}{650668944087511172} a^{7} + \frac{18993296439154574}{162667236021877793} a^{6} + \frac{107581827888441595}{325334472043755586} a^{5} + \frac{305599737318537995}{1301337888175022344} a^{4} - \frac{131249323672258651}{325334472043755586} a^{3} - \frac{65774852812051674}{162667236021877793} a^{2} + \frac{60784069746797613}{325334472043755586} a - \frac{635877871975567299}{1301337888175022344}$
Class group and class number
Trivial group, which has order $1$ (assuming GRH)
Unit group
| Rank: | $20$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 47133176363.7 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A non-solvable group of order 5040 |
| The 15 conjugacy class representatives for t21n38 |
| Character table for t21n38 |
Intermediate fields
| The extension is primitive: there are no intermediate fields between this field and $\Q$. |
Sibling fields
| Degree 7 sibling: | 7.7.46643776.1 |
| Degree 14 sibling: | Deg 14 |
| Degree 30 sibling: | data not computed |
| Degree 35 sibling: | data not computed |
| Degree 42 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/5.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/7.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/17.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }$ | ${\href{/LocalNumberField/29.12.0.1}{12} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }$ | ${\href{/LocalNumberField/31.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/31.3.0.1}{3} }$ | ${\href{/LocalNumberField/37.10.0.1}{10} }{,}\,{\href{/LocalNumberField/37.5.0.1}{5} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{3}{,}\,{\href{/LocalNumberField/41.3.0.1}{3} }$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/47.7.0.1}{7} }^{3}$ | ${\href{/LocalNumberField/53.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }$ | ${\href{/LocalNumberField/59.5.0.1}{5} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 728809 | Data not computed | ||||||